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ABSTRACT
A chain-revised Groot-Warren equation of state (crGW-EOS) was developed and tested to describe systems of homo-oligomeric chains in
the framework of dissipative particle dynamics (DPD). First, thermodynamic perturbation theory is applied to introduce correction terms
that account for the reduction in pressure with an increasing number of bonds at constant bead number density. Then, this EOS is modified
by introducing a set of switching functions that yields an accurate second virial coefficient in the low-density limit. The crGW-EOS offers
several improvements over the revised Groot-Warren equation of state and Groot-Warren equation of state for chain molecules. We tested
the crGW-EOS by using it to predict the pressure of oligomeric systems and the B2 virial coefficient of chain DPD particles for a range of
bond lengths. Additionally, a method is developed for determining the strength of cross-interaction parameters between chains of different
compositions and sizes and for thermal and athermal mixtures. We explored how different levels of coarse-graining affect the upper-critical
solution temperature.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5058280

I. INTRODUCTION

In 1993, Hoogerbrugge and Koelman developed the dissipa-
tive particle dynamics (DPD) method.1,2 DPD is a coarse-graining
method used to model mesoscopic phenomena of complex fluids
by aggregating several atoms or small molecules together as a sin-
gle particle whose interaction with other particles is described by
soft, purely repulsive conservative potentials. Unlike other coarse-
graining approaches such as the MARTINI,3 Shinoda-DeVane-
Klein,4 statistical associating fluid theory-γ Mie,5 and transfer-
able potentials for phase equilibria–coarse-grain6 force fields, DPD
enhances simulation speed by using a softer potential (allowing for a
longer time step in molecular dynamics) and neglecting long-range
interactions (reducing the number of distance calculations and/or
force evaluations). In the DPD method, particles are assigned ran-
dom and dissipative forces that can be tuned to satisfy the fluctuation
dissipation theorem and to maintain a constant temperature in the

simulation.7,8 These forces can also be tuned with the time step size
to yield correct hydrodynamical behavior, ensure conservation of
momentum, and follow the equipartition theorem.8

In 1997, Groot and Warren made the DPD method more use-
ful by introducing the Groot-Warren equation of state (GW-EOS).7
Groot and Warren developed the GW-EOS by using the virial theo-
rem and fitting simulation data to relate the force field repulsive con-
stant, aij, to the thermodynamic compressibility in systems compris-
ing particles that interact with the DPD potential.7 The GW-EOS is
given by

pGW = ρ0
i kBT + αaii(ρ0

i )
2
, (1)

where pGW is the pressure of the system, T is the absolute tempera-
ture, kB is the Boltzmann constant, aii is the repulsive force constant,
and ρi is the pure-phase number density of particle type i in the fluid
where the pure-phase density is defined in relation to a reference

J. Chem. Phys. 150, 124104 (2019); doi: 10.1063/1.5058280 150, 124104-1

Published under license by AIP Publishing

https://scitation.org/journal/jcp
https://doi.org/10.1063/1.5058280
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.5058280
https://crossmark.crossref.org/dialog/?doi=10.1063/1.5058280&domain=aip.scitation.org&date_stamp=2019-March-25
https://doi.org/10.1063/1.5058280
https://orcid.org/0000-0003-1821-2725
https://orcid.org/0000-0003-2534-4507
https://doi.org/10.1063/1.5058280


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

system by a method developed by Kacar et al.9 Groot and War-
ren found α = 0.101 ± 0.001 through fitting to systems with three
different values of aii over a range of densities.10 With the GW-
EOS, a new method to connect interaction strength between beads
of the same type to the macroscopic properties of a fluid was intro-
duced.7 The GW-EOS framework has allowed researchers to explore
liquid-liquid equilibria (LLE), interfacial tensions, the formation of
surfactant mesophases, homo- and block polymer melts, and many
other self-assembly and phase-separation phenomena.11–29

But the GW-EOS method has certain drawbacks. First, the GW-
EOS relies on the Flory-Huggins theory to parametrize interaction
strengths between different bead types in mixtures.9,10,30 Flory-
Huggins theory assumes that all particles are of the same size; in
the DPD framework, this means that each particle type is required
to have the same pure-phase density (i.e., the same size and self-
interaction strength) regardless of the actual size and chemistry of
the fragments being represented in DPD.30 Therefore, the GW-
EOS cannot be used to accurately predict the thermodynamic and
mechanical properties of mixtures.9,10,30 Another drawback is that
the GW-EOS framework yields inaccurate predictions of the pres-
sure of a system as density is decreased (i.e., pressure is decreased).
Groot and Warren were aware of this, noting that inaccuracy occurs
because the leading coefficient in the quadratic density term of the
pressure equation of state is approximated as a constant for sys-
tems with a sufficiently high density.7 The result is that the GW-
EOS improperly recovers virial coefficients in the low-density limit.7
Maiti and McGrother noted that the value of α is not constant, but
rather a weak function of aii and ρ.10 Similarly, Liyana-Arachchi
et al. demonstrated that Groot and Warren’s approximation of α
deviates significantly as density decreases.31

Despite GW-EOS’s shortcomings, the popularity of the method
has caused researchers to refine it. For instance, by building on the
work of Maiti and McGrother,10 Travis et al. united the relation
for the free energy of a DPD fluid with Scatchard-Hildebrand reg-
ular solution theory, allowing the interaction between particles to
be different in both size and chemistry.30 With their approach, the
self-interaction strengths between like beads were parametrized with
solubility parameters, and cross-interactions were parametrized
with differences in cohesive energy density between each bead
type.30

To create a more applicable and accurate equation of state,
particularly at lower particle densities (allowing for a smaller num-
ber of DPD particles to represent a given system), Liyana-Arachchi
et al. developed the revised Groot-Warren equation of state (rGW-
EOS).31 The rGW-EOS allows researchers to introduce the B2 virial
coefficient and a set of switching functions to restore virial char-
acteristics expected at low densities31 and to adjust how much the
quadratic terms contribute to the pressure in the equation of state.
The rGW-EOS is given by31

prGW = ρ0
i kBT + [B2(aii)FB2(ρ

0
i ) + aiiFα(ρ0

i )](ρ
0
i )

2, (2)

with

FB2(ρ) =
1

1 + ρ 3 (3)

and

Fα(ρ) =
c1ρ 2

1 + c2ρ 2 , (4)

where B2(aii) is the second virial coefficient of a unary DPD fluid
with the repulsive force constant of aii, c1 and c2 are equal to 0.0802
and 0.7787, respectively (determined by fitting with test simulation
data). The rGW-EOS expands the range of values over which the
equation of state is accurate for single bead representations, and it
improves the overall accuracy of the equation of state approach.31
When using the rGW-EOS to analyze a range of state points similar
to those analyzed by Groot and Warren,7,31 the mean of unsigned
percent error falls to 0.7% from the 11.5% yielded by GW-EOS. Even
over a range of state points common to DPD simulations, the rGW-
EOS is far more accurate than the GW-EOS.

When the rGW-EOS and GW-EOS are applied to systems com-
posed of chain molecules, it is relevant whether one should choose
the bead density of the system or the chain density of the system
as the input density. For systems comprising single-bead chains,
there is no difference between the bead and chain densities of the
system. However, for a system comprising multi-bead chains, the
difference between the bead and chain densities becomes signifi-
cant. Typical DPD systems are often packed tightly enough that
researchers make an assumption that the bead density can be used
as the input density. At low densities, this leads to poor parametriza-
tion as the ideal gas and virial terms (both largely dependent on
the chain density) begin to have a dominant contribution to the
pressure in the equation of state. To circumvent this issue, one
can use the bead density while making the equation of state sen-
sitive to the number of beads in each chain. However, because
the rGW-EOS and GW-EOS models are insensitive to the bonding
details of the chains—such as the bond length—this approach still
leads to the incorrect calculation of appropriate parameters for each
system.

Thus, this work is an extension of the rGW-EOS in the work
of Liyana-Arachchi et al. To address the need for the rGW-EOS to
describe homo-oligomer chains, we devise a new equation of state
called the chain-revised Groot-Warren equation of state (crGW-
EOS). It is developed using first-order thermodynamic perturba-
tion theory (TPT1) and Wertheim’s theory of polymerization, which
together account for the reduction in pressure when bonds are
introduced.32–35 We also validate the crGW-EOS through a series
of Monte Carlo (MC) simulations. Finally, we include the effects
of bonding in thermal and athermal mixtures on the rGW-EOS
framework.31

II. SIMULATION METHODS
A. DPD potential

Within the framework of DPD, the interactions between par-
ticles are described by a soft and purely repulsive conservative
potential

u(rij) =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

aij
2 (1 − rij

rcut
)

2 rij
rcut

≤ 1

0 rij
rcut

> 1,
(5)

where aij describes the strength of the interaction between two par-
ticles, i and j, which are separated by a distance, rij. This potential
is truncated at a distance in dimensionless DPD units, rcut, where
it falls to 0. In this work, a harmonic potential between bonded
beads (1-2 interactions) is used to model a number, m, of DPD
particles chained together in homo-oligomer chains. This potential
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has a coarse-grained spring constant, kspring, and a corresponding
bond length, l = rbond/rcut. The strength of the bonds does not affect
the system pressure if the bonds have a rigidity kspring > 100. At
bond lengths l < 0.25, intra-chain (1-3) interactions cause issues in
properly sampling the bond length distribution; because of this, a
larger spring constant is needed to properly constrain the average
simulated bond length.

All simulations in this work are done using the MCCCS-MN
(Monte Carlo for Complex Chemical Systems–Minnesota) software
suite. The kd-tree data structure for computing particle-particle
interactions is used to add significant efficiency.36 Unless otherwise
noted, probabilities for MC moves (e.g., center-of-mass translation,
center-of-mass rotation, and configurational bias) in each simula-
tion are chosen to be equal to the relative number of degrees of
freedom involved in each move type.

B. Simulations for developing and validating
the crGW-EOS

To tune fitting parameters η and β (note: these parameters are
explained in detail in Sec. III A 1) for the crGW-EOS and to vali-
date the crGW-EOS against the GW-EOS and rGW-EOS, we per-
form several MC simulations in a one-box NVT ensemble using a
wide range of system parameters. These include the number of DPD
beads bonded in each chain, m (2, 4, or 8), bead density, ρ (3, 4,
5, 6, or 7), bond length, l (0.3, 0.4, 0.5, or 0.6), and bead-bead self-
interaction parameter, aii (10, 20, 30, or 40). In each simulation, 3072
DPD beads are modeled, which corresponds to 1536, 738, and 384
molecules when modeled in 2-, 4-, or 8-bead chains, respectively.
The volume of the simulation box is chosen to simulate the cor-
rect bead density for each simulation. The results are averaged across
four independent simulations.

The second virial coefficient for chain molecules, B2
chain, is cal-

culated based on a method used by Martin and Siepmann.37 Mar-
tin and Siepmann’s method involves calculating the second virial
coefficient of a fully flexible molecule,38,39

B2(T) = 2π∫
∞

0
[⟨e

−Uinter(r12)
kBT ⟩

α1 ,α2

− 1]r2
12dr12, (6)

where U inter is the potential between two molecules whose centers of
mass are a distance, r12, apart. The ⟨. . .⟩α1 ,α2 represents the canoni-
cal ensemble averaged over configurations weighted solely on their
Boltzmann weights. The configurations are sampled in simulations
comprising two boxes, each box containing a single chain. The con-
formational space is sampled through rotational and configurational
moves. Center of mass separations larger than twice the maximum
extent of a chain are not considered. The intermolecular energy is
calculated for r12 values in step sizes of 0.05 Å/rcut. We run these
two-box simulations using the same range of system parameters (m,
l, and aii) as with the one-box tuning simulations. The results are
averaged across eight independent simulations.

C. Simulations for athermal mixtures
To validate a cross-interaction term, aij, added to the crGW-

EOS, we run MC simulations of mixtures in the NpT and NVT
ensembles. First, three fictitious mixtures are tested in the athermal

regime: a 1-bead fluid, Vh1, with a molecular volume similar to that
of n-hexane (220 Å3) in a mixture with a 2-bead fluid, Vh2, of the
same volume (220 Å3); Vh1 in a mixture with a 2-bead fluid, Vo2,
with a molecular volume similar to that of n-octane (275 Å3); and
Vh2 in a mixture with Vo2 (these molecular volumes were estimated
by Liyana-Arachchi et al.31 using the COSMOTherm software).40,41
For parametrization purposes, we use a reference volume similar to
the geometric mean between the volume of Vh1 and the volume of
a single bead in Vh2, 150 Å3. This density also corresponds to five
water molecules per reference bead. The water reference fluid has
a density, ρref, of 5.0, which yields a cutoff distance, rcut, of 9.086
and a reference pressure, pref, of 41.89. The pure-phase density, ρ0,
of the fictitious n-hexane and n-octane fluids is set equal to 3.432
and 2.780, respectively, to match experimental conditions. The bond
lengths, l, for Vh2 and Vo2 are set to 0.39 and 0.5, respectively, to
match distances between centers of mass obtained from united atom
simulations. Table I shows the self- and cross-interaction param-
eters for each mixture and each equation of state. Each simula-
tion includes 2000 molecules, and each component’s mole fraction
ranges from xi = 0.0 to xi = 1.0 in step sizes of 0.1. The simulations
have an equilibration period of at least 70 000 MC cycles followed
by a production period of at least 70 000 MC cycles averaged across
eight independent trajectories.

D. Simulations for thermal mixtures
To calculate a Flory-Huggins χ-parameter, we first calculate the

infinite-dilution excess chemical potential or the Gibbs free energy
of transfer for a particle of type i from a reference vapor phase to a
liquid phase consisting of particles, j,42,43

∆Gtrans
i,j = µex

i,j = −RT ln(
ρ iliq,j

ρ ivap
), (7)

TABLE I. The self- and cross-interaction parameters for each athermal mixture using
the crGW-EOS, rGW-EOS, or GW-EOS. For the rGW-EOS and the GW-EOS, the
bead density was used as an input.

aii

Model Vh1 Vh2 aij

crGW-EOS 35.0 8.57 17.3
rGW-EOS 35.0 7.43 16.1
GW-EOS 32.3 7.36 15.4

Vh1 Vo2

crGW-EOS 35.0 13.2 21.5
rGW-EOS 35.0 11.9 20.4
GW-EOS 32.3 11.6 19.4

Vh2 Vo2

crGW-EOS 8.57 13.2 10.6
rGW-EOS 7.46 11.9 9.4
GW-EOS 7.36 11.6 9.24
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where ρiliq,j and ρivap are the average number densities of particle i
in the liquid and vapor phases, respectively, and R is the molar gas
constant. We follow the work of Liyana-Arachchi et al. in perform-
ing MC simulations in a two-box pseudo-osmotic Gibbs ensem-
ble. In these simulations, volume moves are only performed on
the liquid box. The solute, i, is the only particle allowed to swap
between the boxes. The liquid phase is kept at a constant pressure
of 41.89, based on a reference water bead which comprises three
water molecules and which has a reference density of 5.0. In this
work, the solvent is made of monomer units, and we test four differ-
ent levels of coarse-graining for the solute particle: a dimer, trimer,
tetramer, and hexamer (where each “monomer” unit is represented
by a bead). The number of solvent chains in each simulation (500,
500, 970, and 3000 for the dimer, trimer, tetramer, and hexamer
simulations, respectively) differs to ensure that the liquid box is
large enough to accommodate the larger solute molecules. The bond
length of each chain ranges between 0.1 and 1.5 in step sizes of
0.1 (an additional bond length of 2.5 was also tested). The coarse-
grained pure-phase solvent densities range from 2.0 to 5.5, 2.0 to 4.5,
2.0 to 4.5, and 2.0 to 3.5 for the dimer, trimer, tetramer, and hex-
amer systems, respectively, in step sizes of 0.5. These are shown
in Table II, along with the corresponding density simulated and
the solvent-solvent interaction parameter calculated at each density.
Note that the solute-solute interaction parameter is set to 0 because
there is only one solute in each simulation. The cross-interaction
parameters, chosen to be similar to athermal mixing values, are
shown in Table III. Volume moves are only allowed on the liq-
uid box, and a biasing potential is introduced with swap moves to
ensure that the solute is sampled evenly in both boxes. The equi-
libration is run for at least 30 000 MC cycles, and the production
is also run for at least 30 000 MC cycles with four independent
trajectories.

E. Simulations for miscibility and UCST
To evaluate which equation of state—crGW-EOS, rGW-EOS,

or GW-EOS—gives the most reasonable upper-critical solution
temperature (UCST), three fictitious mixtures are tested for each

TABLE II. The pure-phase density of each solvent fluid. The rGW-EOS is used to
generate the ajj parameters. The left-most column is the input pure-phase density
for each system, and the middle column is the simulated density of a neat solvent
system generated from NpT Gibbs ensemble simulations to show the deviation from
the value predicted by the equation of state.

Solvent parameters

Input density Simulated density ajj

2.0 1.961 126.6
2.5 2.442 73.25
3.0 2.962 47.72
3.5 3.4813 33.52
4.0 3.994 24.80
4.5 4.505 19.05
5.0 5.016 15.07
5.5 5.516 12.19

TABLE III: The cross-interaction parameters between the solute and solvent beads.
For each solute, aij is chosen to be similar to an athermal mixing value.

Solute type aij

Dimer 23.39
Trimer 15.74
Tetramer 17.73
Hexamer 7.33

equation of state with MC simulations in a two-box NpT Gibbs
ensemble: Vh1 with Vh2, Vh1 with Vo2, and Vh2 with Vo2. In each
simulation, there are 1000 chains of each molecule type, and the
system is initialized with only one molecule type per box. The χ−1

values we test range from 0.2 to 0.56; this range is selected based
on cross-interaction parameters that lead to mixtures being nei-
ther totally miscible nor immiscible. The self-interaction parameters
are parametrized to correspond to liquid n-hexane or n-octane (i.e.,
they are calculated from the number densities of liquid n-hexane or
n-octane) at 273 K and 1 atm. The self-interaction parameters and
bond lengths are outlined in Table IV. The DPD reference fluid is
taken as a bead with a density of 5.0 (corresponding to five water
molecules per reference bead) and pressure of 41.89, which yields
an rcut of 9.09. The systems undergo equilibration for 180 000 total
MC cycles (40 000 of which are just volume equilibration and the
remaining involve swap moves). After equilibration, four indepen-
dent simulations are spawned for production, which are run for at
least 70 000 MC cycles.

F. Simulations for acetic anhydride/n -alkane mixtures
To test the crGW-EOS on a real system, we study mixtures

of n-hexane/acetic anhydride and n-octane/acetic anhydride using
MC simulations in a two-box NpT Gibbs ensemble. These mixtures
are parameterized with the COSMOTherm software. Prior to these
simulations, harmonic bond parameters are estimated using gas
phase MC simulations in which the molecules are described by the

TABLE IV. Simulation parameters for octane and hexane using each equation of state
method.

Model m-beads aii li

crGW (hexane) 1 35.0 . . .
2 8.57 0.39

crGW (octane) 2 13.2 0.5
rGW (hexane) 1 35.0 . . .

2 7.43 0.39
rGW (octane) 2 11.9 0.5
GW (hexane) 1 32.3 . . .

2 7.36 0.39
GW (octane) 2 11.6 0.5

Pure-phase density (hexane) 3.432
Pure-phase density (octane) 2.780
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COMPASS (Condensed-phase Optimized Molecular Potentials for
Atomistic Simulation Studies) force field.44 Each mixture simula-
tion is parametrized using a reference liquid comprising three water
molecules per bead, where ρref = 5.0, vref = 90 Å3, which yields
rcut = 7.66 Å, and aii ,ref = 15.0, which yields p = 41.89. From these
parameterizations, the resulting self-interaction parameters for hex-
ane beads range from 25.74 at 160 K to 25.97 at 400 K. For octane
beads, the self-interaction parameters range from 40.47 at 160 K to
41.23 at 400 K. The acetic anhydride self-interaction parameters are
13.18 and 53.73 for the 2-bead and 1-bead representations, respec-
tively (note that these do not depend on temperature). Two sets
of simulations are performed; one in which the system is initial-
ized with only one molecule type per box. In the other, each box
is initialized with an equimolar mixture of the two molecules. Each
mixture simulation has a total system size of 2000 molecules split
equally amongst the two molecule types. The mixtures are allowed
at least 300 000 MC cycles of equilibration (40 000 of which are just
volume equilibration and the remaining involve swap moves). After
equilibration, four independent simulations (for each mixture) are
spawned for production and ran for at least 100 000 MC cycles.

G. Calculation of cavity correlation function
The equation of state we propose below for bonded molecules

requires the cavity correlation function, y(r) of the monomeric DPD
fluid and its density derivative of its logarithm (at the bond length of
the chain molecule). y(r) is defined as

y(r) = exp[βU(r)]g(r) (8)
Ô⇒ ln[ y(r)] = βU(r) + ln[g(r)] (9)

Ô⇒
∂

∂ρ
ln[ y(r)] =

∂

∂ρ
ln[g(r)] = −

∂

∂ρ
w(r) (kBT = 1), (10)

where w(r) is the potential of mean force, g(r) is the radial distribu-
tion function of the monomeric DPD fluid, and U(r) is the conserva-
tive part of the DPD interaction potential. Instead of using expensive
simulations, g(r) for any particular choice of {a, ρ} was calculated
numerically (and on the fly) using the Ornstein-Zernike equation
with the hypernetted chain closure (OZ-HNC). For the relatively soft
DPD potential, the g(r) obtained from OZ-HNC converges rapidly
and is highly accurate (confirmed by comparing to explicit simu-
lations). The derivative of g(r) with respect to density at the bond
length of interest was calculated numerically from finite differences,
i.e., w(r, {a, ρ + δρ}) −w(r, {a, ρ − δρ})/2δρ, with δρ = 0.05. Warren’s
open-source SunlightDPD hypernetted chain solver45 is an alterna-
tive DPD-specific OZ-HNC solver that can be used to pre-calculate
and tabulate these derivatives ahead of the chain equation of state
calculations.

III. RESULTS AND DISCUSSION
A. Development of the crGW-EOS

Before deriving the crGW-EOS, we placed a set of constraints.
First, the crGW-EOS needed to be consistent with the rGW-EOS
framework, both physically and mathematically, with the ability to
reduce to the rGW-EOS in the 1-bead per chain limit and to a
modified rGW-EOS in the limit of zero bond length and a bond

force constant of zero. Second, in the low-density limit, the crGW-
EOS had to depend on the chain density rather than the bead density.
This would ensure the crGW-EOS’s adherence to thermodynam-
ics in the ideal gas limit. In the high-density limit, the quadratic
term from the GW-EOS and rGW-EOS produced better predic-
tions when the bead density was used instead of the chain den-
sity; therefore, the quadratic term in density would depend on the
overall bead density. Any corrective terms would depend on the
properties of the interaction between the chain’s monomer units.
Additionally, for improved low-density predictions, we expected
the B2 virial coefficient, which we develop in the second half of
this section, to play a role in describing the interactions of these
systems.

The approach of Johnson et al.35 for the pressure of tangent
hard sphere and Lennard Jonesium chains, based on Wertheim’s
theory of polymerization,32,33 is a useful starting point that meets
some of these criteria. Using TPT1, Johnson et al. derived a rela-
tion for the Helmholtz free energy of a chain fluid.34,35 In TPT1,
it is assumed that the structure of a dense chain fluid is dominated
by short range repulsive interactions so that the structure of a chain
fluid is similar to that of a monomeric fluid at the same monomeric
density. Therefore, the monomer fluid is chosen as the reference, and
the effect of bonds on the structure of the system is assumed to cause
small perturbation to the reference system, and the equation of state
they derived is the following:

p = pR −
m − 1
m

ρRkBT −
m − 1
m

ρ2
R
∂[ln yR(l)]

∂ρR
, (11)

where pR is the pressure of the monomeric reference fluid, the sec-
ond term captures the difference in ideal gas pressure between the
monomeric fluid vs. the chain fluid (i.e., ρRkBT vs. (ρR/m)kBT) and
the final term captures the effect of intermolecular bonding. We can
modify this equation systematically to include both the high and low
density limits as follows:

1. High density limit
At high densities, the repulsive interactions dominate over the

ideal gas and (chain) second virial coefficient contributions to the
pressure. We can plug in either the GW-EOS or the more accu-
rate rGW-EOS for the pressure of the reference fluid and focus
on the effect of introducing bonds in a DPD fluid. However, we
find that replacing the (m − 1)/m prefactor in the third term with
η(m − 1)/(m + β), where η and β are fitting parameters, allows for
a much better match with the simulation results for bead densities,
ρ ∈ (3, 5) and α ∈ (10–50). That is, the equation of state is

p = pR −
m − 1
m

ρRkBT − η
m − 1
m + β

ρ2
R
∂[ln yR(l)]

∂ρR
. (12)

a. Physical interpretation of the yR(r) term. yR(r) represents the
probability that there is a cavity at r given that there is a cavity at
the origin. For hard spheres, the size of the cavity needed to insert
the hard sphere is well defined—so, yR(r = l) represents the con-
ditional probability of a “dimer” shaped cavity with a bond length
l given that there is already a cavity large enough to insert a hard
sphere at the origin. For soft solutes, such a description of a cavity
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is somewhat qualitative. So, the first order approximation for the
probability to create a cavity needed to introduce a chain of m DPD
beads is not [ y2(l)]m−1 [Eq. (4) of Johnson et al.35], but slightly dif-
ferent, and the empirically introduced parameters, β and η, attempt
to capture this difference. At this point, we cannot justify them more
rigorously.

An intuitive way to understand the origin of the ρ2
R

∂
∂ρR

ln[ yR(l)]
term in Eq. (11) can be as follows:

ρ2
R
∂

∂ρR
ln yR(l) = −ρ2

R
∂

∂ρR
wR(l). (13)

Now the potential of mean force, w(r), is a free energy in the
canonical ensemble. The pressure is the volume derivative of the
Helmholtz free energy, P = −∂A/∂V. Substituting ρR ∼ 1/VR, we
get ∆P = ρ2

R∂A/∂ρR = −ρ2
R∂wR(l)/∂ρR for each bond (of length l)

that is created, with (m − 1) monomer bonds per chain. There is an
additional 1/m factor since the number of molecules in chain fluid
compared to the number of molecules in the reference monomer
fluid is reduced by a factor of m. Consequently, the drop in pressure
due to the formation of bonds (in addition to the ideal gas term) is
∆P ∼ m−1

m ρ2
R∂wR(l)/∂ρR.

2. Incorporating the low density limit
and the role of B2

In the low density limit, we expect the pressure of the chain
fluid to behave as P/kBT = ρchain + B2ρ2

chain, where B2 is the second
virial coefficient between two chains. We therefore employ the same
strategy as in the development of the rGW-EOS and introduce two
switching functions to interpolate between the two limits. The equa-
tion of state, that we term the “chain revised GW-EOS” (crGW-EOS)
thus becomes

p
kBT

= ρchain + FB2(ρchain)Bchain
2 (ρchain)

2 + Fα(mρchain)(mρchain)
2

× [aii − η(
m − 1
m + β

)
∂[ln yR(l)]
∂mρchain

], (14)

where mρchain = ρR, and FB2 and Fα are the same switching func-
tions present in the rGW-EOS,31 and Bchain

2 is the DPD chain virial
coefficient. We describe the calculation of Bchain

2 in Sec. III A 2 a.

a. Calculation of Bchain
2 . The inter-chain second virial coeffi-

cient is a function of the chain length (m), bond length (l), and the
bead-bead repulsion parameter (a). Unlike a monomeric fluid, it is
not possible to directly integrate the Mayer function and fit to a suit-
able expression as was done for the development of the rGW-EOS.
As described in Sec. II, Bchain

2 = Bchain
2 (a,m, l) was calculated for a

range of relevant parameter values. The results were then fit to a
3 parameter equation that satisfied certain physical constraints—(i)
we must recover the monomeric virial coefficient in the limit of a
1-bead chain. (ii) As the bond length decreases to 0, beads in the
chain will overlap entirely and form a monomer made of many
beads. The interaction strength between beads will scale with the
number of beads in each chain. (iii) For zero inter bead repul-
sion, the virial coefficient must reduce to zero. Mathematically, these
constraints are

lim
m→1

Bchain
2 (aii,m, l) = Bmono

2 (aii), (15)

lim
l→0

Bchain
2 (aii,m, l) = Bmono

2 (m2aii), (16)

lim
aii→0

Bchain
2 (aii,m, l) = 0. (17)

These restrictions suggest the following approximate form for the
chain second virial coefficient relation:

Bchain
2 (aii,m, l) = g(aii, l,m)Bmono

2 (f(m, l)aii). (18)

To find Bmono
2 , the Mayer function for a single bead DPD fluid

was computed as

Bmono
2 (aii) = −2π∫

rc

0
(exp[−u(aii, r)/kBT] − 1)r2dr. (19)

Upon plugging in the DPD potential [Eq. (5)] and solving this
complex integral, we end up with the following expression for Bmono

2 :

Bmono
2 (aii) = −2π

⎡
⎢
⎢
⎢
⎢
⎢
⎣

(1 + aii)
√

π
2 Erf(

√ aii
2 )

a
3
2
ii

+
e−

aii
2 − 2
aii

−
1
3

⎤
⎥
⎥
⎥
⎥
⎦

, (20)

where Erf is the Gauss error function. In contrast to the
parametrized relation for Bmono

2 developed along with the rGW-
EOS,31 this function saturates to the proper hard sphere limit of 2π

3
for a large aii, and it is valid for any positive valued aii. This is impor-
tant because most of the aii-dependence in Bchain

2 (aii,m, l) arises
from the Bmono

2 factor. Figure 1 shows how our relation for Bmono
2

compares to the one developed with the rGW-EOS. Both equations
produce similar values for Bmono

2 for all aii less than 50. At aii > 50,
the two relations diverge.

To find a functional form for g(aii, l, m) and f(m, l), we had
to make them independent of one another. To do this, we found a
functional relation for f(m, l) because Eq. (16) implied

FIG. 1. A comparison of Eq. (20) with a similar function parametrized by Liyana-
Arachchi et al. The inset graph is a zoomed-in view of the smaller aii values. The
red diamonds and black circles denote the resulting Bmono

2 values at each aii using
the rGW-EOS and crGW-EOS, respectively.
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lim
l→0

g(aii, l,m) = 1. (21)

We fit simulation data of chain virial coefficients of chains with bond
lengths nearing 0 to obtain the function f(m, l), approximated as

f(m, l) = m
2

(l+1)3 . (22)

This suggested that the monomeric contribution to the chain virial
coefficient would saturate quickly as the number of beads in the
chain increased. With this relation, we isolated the function g(aii,
l, m) by factoring out the contribution from the monomeric portion
of the equation

Bchain, sim.
2 (aii,m, l)
Bmono

2 (f(m, l)aii)
= g(aii, l,m). (23)

The resultant quantity could be described by the approximation

g(aii, l,m) = A[(1 − γ)m2 + γm − 1]lδ + 1, (24)

where γ, A, and δ are fitting parameters (note that this approx-
imation’s functional form was known because of its limits when
m approaches 1 and l approaches 0). A least squares fit to sim-
ulation data yields γ = 0.926, A = 1.954, and δ = 1.57. These
parameters yielded accurate predictions for the chain virial coeffi-
cient, with a mean unsigned percent error (MUPE) of 1.6%. The
relative errors in the predicted Bchain

2 from our equation com-
pared to simulated values (see Fig. S1 of the supplementary mate-
rial) show no pattern to improve upon this equation; an exact
relation would be very complex and lacks a simple mathematical
solution.

With Bchain
2 , the crGW-EOS is fully described as in Eq. (14),

p
kBT

= ρchain + FB2(ρchain)Bchain
2 (aii,m, l)(ρchain)

2

+ Fα(mρchain)(mρchain)
2
[aii − η(

m − 1
m + β

)
∂ ln yR(l)
∂mρchain

].

B. Fitting and validating the crGW-EOS
To fit and validate the full pressure equation of state for a DPD

chain fluid, we performed simulations, described in Sec. II B, over a
wide range of parameters common to DPD simulations. We fit the
data from these simulations to the crGW-EOS using a least squares
fit method. Upon fitting, we determined fitting parameters of η
= 41.083 and β = 1.967, which yielded a 2.5% MUPE. The relative
error absolute value varied up to 11.5%.

Figure 2 shows the mismatch between the predicted pressure
and the simulated pressure for a given set of parameters. The pre-
dicted pressures are distributed around 0, with a slight tendency to
overpredict the simulated pressures. Like in the GW-EOS and rGW-
EOS, as the bead density and the pressure decrease, the expected
error in predicted pressure from the equation of state increases. Typ-
ically, this does not present a problem if the reference volume is
chosen with a moderate pure-phase bead density for the molecule.
The clearest remaining pattern is the mismatch between simula-
tion and experiment, which arises from the number of beads in the
chain. As the number of beads in the chain increases, the pressure
for a system of 2-bead chains moves from slight under-prediction

FIG. 2. A depiction of the percent mismatch between simulated pressure and pres-
sure predicted by the crGW-EOS. Each subplot is color- and symbol-coded to
different parameters to explore patterns in the pressure mismatch. The top left
graph is coded according to the bond length l. The top right graph is coded by
the bead density ρ. The bottom left graph is coded to the bead-bead interaction
parameter aii . The bottom right graph is coded according to the number of beads
in each chain m.

to over-prediction. Higher order corrections to the equation of state
are needed to further correct for this over-prediction.

Compared to the GW-EOS and rGW-EOS, the crGW-EOS bet-
ter predicts the pressure of a system, as shown in Fig. 3. There
are two reasons for this improvement. First, the low density lim-
its in the crGW-EOS depend solely on the chain density. Second,
the high density limits in the crGW-EOS depend largely on the

FIG. 3. A comparison of the accuracy of the crGW-EOS for chain molecules with
the accuracy of the GW-EOS and the rGW-EOS across the same range of param-
eters used in Fig. 2. The prediction errors are shown for the crGW-EOS, the
rGW-EOS, and the GW-EOS, with dark green circles, magenta pluses, and cyan
squares, respectively.
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bead density, which includes a corrective factor to account for the
effects of bonding. This factor also determines how much 2-bead
interaction regions overlap. The effect on the pressure prediction
and the appropriate aii for a given density and bond length l can be
seen in Fig. 4, which compares the crGW-EOS, GW-EOS, and rGW-
EOS. The crGW-EOS accounts for the bond length by adjusting the
value of aii so that the chain retains a constant volume regardless of
the bond length. Beyond a bond length of 1.0, the beads in the chain
no longer overlap. Increasing the bond length has no effect on the
volume of the molecule, which we see in Fig. 4 by the saturation of
the pressure and aii at bond lengths longer than 1.0. In contrast, both
the GW-EOS and rGW-EOS predictions for aii remain completely
insensitive to the bonding details of the chains.

C. Athermal mixtures
To describe binary mixtures composed of homo-oligomer

chains, we must develop equations to parametrize the cross-
interaction parameter, aij, between two different chains. We first
look at athermal mixtures, which are mixtures that have a Flory-
Huggins χ-parameter equal to 0. While they are not useful for
describing phase equilibria properties, athermal mixtures are use-
ful to verify the cross-interaction parameters from thermal mixtures
because in the limit that χ = 0, we should recover the athermal mix-
ture’s cross-interaction parameters. These mixtures behave similarly
to ideal mixtures; namely, their enthalpy of mixing is not in excess
and the two molecules will have similar chemistry. But, in contrast
to ideal mixtures, which upon mixing require constant volume and
enthalpy and whose changes in entropy are given only by a combi-
natorial prefactor, athermal mixtures require only constant enthalpy
upon mixing. By considering the free energy of mixing, Travis et al.
found a relationship between the DPD parameters and cohesive
energy densities.30 This relationship is expressed in terms of the

FIG. 4. A comparison of how each equation of state’s prediction of the pressure
(top) fares compared with the simulated pressure of a system. The comparison
system consists of a fluid of 3-bead chains at a constant chain density of ρchain
= 1.67 with a target pressure of ptarget = 41.89, as a function of bond length. In
each plot, the black, red, and green lines depict the results from the crGW-EOS,
the rGW-EOS, and the GW-EOS, respectively.

quadratic prefactor and pure-phase density in the DPD equation of
state and is given by30

(δi − δj)2
= −r4

cut[αii(ρ
0
i )

2aii + αjj(ρ0
j )

2ajj −2αij(ρ0
i )(ρ

0
j )aij]. (25)

This equality describes athermal mixtures when the cohesive energy
densities, δi and δj, are equal.

Travis et al. found that when the quadratic cross prefactor, αij,
is chosen to be equal to √αiiαjj, the cross-interaction parameter can
be computed as30

aij =
(ρ0

i )
2aii + (ρ0

j )
2ajj

2(ρ0
i )(ρ0

j )
. (26)

In the development of the rGW-EOS, the quadratic prefactor, α, was
replaced by a function, h(a, ρ). This function contains all the terms
that are multiplied by aρ2 in the rGW-EOS.31 We modify the crGW-
EOS in the same way and extract the quadratic prefactor for homo-
oligomer chains, which is given by

h(a, l,m,ρ0
chain) =

FB2(ρ
0
chain)B

chain
2 (aii,m, l)
a

+Fα(mρchain0)(mρ0
chain)

2

× [1 − (
η
a
)(

m − 1
m + β

)
∂ ln yR(l)
∂mρ0

chain
]. (27)

By substituting h(a, l,m, ρ0
chain) into the rGW-EOS cross-interaction

parameter equation, we find the cross-interaction parameter
between beads in unlike homo-oligomer chains in the athermal limit
by reference to each chain’s pure-phase density properties.

To compare the effectiveness and validity of our new cross-
interaction equation against Eq. (26), the GW-EOS, and the rGW-
EOS, we ran NpT and NVT simulations of the following fictitious
mixtures: Vh1–Vh2, Vh1–Vo2, and Vh2–Vo2. These mixtures and the
simulation methods are described in Sec. II C. If the equations of
state are robust, the Vh1–Vh2 mixture should exhibit ideal thermo-
dynamic mixing behaviors in the athermal mixing limit since both
chains represent the same molecule type. Figure 5 demonstrates
these behaviors for the Vh1–Vh2 mixture, and Fig. 6 demonstrates
these behaviors for the Vh1–Vo2 and Vh2–Vo2 mixtures (i.e., the
excess enthalpy of mixing, excess volume of mixing, and excess
internal energy of mixing show very small deviations from ideal
behavior). The crGW-EOS shows the smallest deviation from ideal
behavior, but rGW-EOS and GW-EOS also come close to repro-
ducing athermal mixing behavior. However, where rGW-EOS and
GW-EOS deviate significantly is in NVT simulation results, shown
in the top left plot of Fig. 5, where pressures show up to an 11% rela-
tive error from our target. In contrast, the crGW-EOS-parametrized
NVT simulation results for pressure show up to a 2.5% relative error
from our target. Comparing Figs. 6 and 5 illuminates an argument
for the mixture of Vh1–Vo2 that is nearly identical to that of Vh1–
Vh2. Small deviations from ideal mixture are again observed for
each quantity considered. Furthermore, the crGW-EOS yields the
smallest deviations from ideal behavior in enthalpy, while rGW-
EOS and GW-EOS still diverge far from the correct state point.
Figure 6 shows the excess thermodynamic properties of the Vh2–
Vo2 mixture compared to the Vh1–Vo2 mixture. This compari-
son shows that both mixtures produce small, similar deviations
from the expected state point of the system. Therefore, our results
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FIG. 5. Thermophysical properties for the Vh1–Vh2 binary mixture as a function of
the mole fraction of Vh1. The properties studied are the relative error in pressure
(top left), relative excess enthalpy (bottom left), relative excess internal energy
(top right), and relative excess molar volume (bottom right). Solid lines and dotted
lines depict results from NpT and NVT simulations, respectively. The magenta,
cyan, and purple correspond to the crGW-EOS, rGW-EOS, and GW-EOS,
respectively.

indicate that the crGW-EOS is producing nearly athermal behav-
ior based on its small deviations from the desired state point and
ideal mixing in nearly all cases. Ultimately, Figs. 5 and 6 ensure that
the crGW-EOS and Eq. (27) can parametrize different molecular
representations properly.

Finally, Figs. 5 and 6 show that for all three equations of state,
the excess enthalpy of mixing, excess volume of mixing, and excess
internal energy of mixing deviate from ideal behavior. But, while
none of the parametrizations produce perfectly ideal mixing behav-
ior, they produce appropriate athermal mixing behavior. Systems
parametrized with GW-EOS and rGW-EOS are consistently incor-
rect at a nearly constant state point, even though they are at the
wrong state point. This indicates that the large excess thermody-
namics of mixing for rGW-EOS and GW-EOS observed in the Vh1–
Vo2 mixture were a result of the large change in the state point.
Around that same state point, the crGW-EOS shows similar fluc-
tuations. This demonstrates that a consistent state point is crucial to
properly recover athermal mixture parameters. Overall, in properly
parametrizing an athermal mixture, the crGW-EOS outperforms the
GW-EOS and rGW-EOS methods because it not only produces sim-
ilar deviations from ideal behavior but also maintains a consistent
and accurate pressure/density.

D. Thermal mixtures
An athermal description of a binary mixture cannot accurately

describe the true binary mixture partitioning behavior. There are
further chemical and size effects to account for when describing
the mixing behavior between two unlike molecules. To properly
describe the cross-interaction strength between the two different
beads, we accounted for the free energy of mixing. This was accom-
plished by relating the Flory-Huggins χ-parameter to the binary

FIG. 6. Thermophysical properties for two binary mixtures, Vh1–Vo2 and Vh2–Vo2,
as a function of the mole fraction of either Vh1 for the Vh1–Vo2 mixture (left) or
Vh2 for the Vh2–Vo2 mixture (right). The properties studied are the relative error
in pressure (top), relative excess enthalpy (middle top), relative excess internal
energy (middle bottom), and relative excess molar volume (bottom). Solid lines
and dotted lines depict results from NpT and NVT simulations, respectively. The
magenta, cyan, and purple correspond to the crGW-EOS, rGW-EOS, and GW-
EOS, respectively.

cross-interaction strength, aij. To compute the χ-parameter of a mix-
ture, we extended the approach developed with the rGW-EOS for
single bead molecules to properly account for the effects of bonding
on the free energies used.31 For mixtures where the particles have
different sizes, the χ-parameter may be expressed in terms of transfer
free energies as31,46

χ ≡
vref

2RTρref
(
∆Gi,j(T)

vi
+
∆Gj,i(T)

vj
), (28)

where ∆Gi,j(T) is the free energy of transfer of a pure-phase particle,
i, into a fluid comprising pure-phase particles, j, at a temperature,
T. vi is the pure-phase volume of particle i. The χ-parameter may
then be expressed in terms of the infinite dilution excess chemical
potentials and pure-phase densities as31,46

χ =
1

2RTρref
{ρ0

i [µ
ex
i,j (aij, ρ

0
j ) − µ

ex
i,i(aii, ρ

0
i )]

+ ρ0
j [µ

ex
j,i (aji, ρ

0
i ) − µ

ex
j,j (ajj, ρ

0
j )]}, (29)
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where µex
i,j (aij, ρ0

j ) is the infinite dilution excess chemical potential
of a solute particle, i, that is inserted into a fluid of solvent par-
ticles, j, at a density, ρ0

j . The interaction strength between parti-
cles i and j is controlled by the cross-interaction parameter, aij.
The χ-parameter is dependent on the infinite dilution excess chem-
ical potential, which is itself dependent on the cross-interaction
parameter.

To obtain χ, we used an iterative sampling process, in which we
computed the terms for the infinite dilution excess chemical poten-
tial present in Eq. (29) by adjusting the value of aij until the desired
value of χ is reached. For efficiency, it is best to use a functional rela-
tion to pre-compute the infinite dilution excess chemical potential
in terms of system parameters. This same approach was taken in the
development of the rGW-EOS for single bead molecules, where an
expression for the infinite dilution free energy of transfer of a solute
particle, i, into a solvent fluid of particles, j, with a pure density, ρ0

j ,
was given by the following equation:31

µex
i,j (aij, ρ

0
j ) = {1 − exp[−aij(0.00323mjρ0

j + 0.00439)]}

×
50.9mjρ0

j

1 − 0.790mjρ0
j

. (30)

We added the number of beads in the solvent chain, mj, to distin-
guish the bead density and the pure-phase density (this equation
is now in terms of the bead density). With a MUPE of 0.3% for a
system with a reference pressure of 41.89 across a wide range of den-
sities, this relation works well for mixtures comprising monomeric
representations of molecules.

To extend this equation to predict the free energy of transfer
for solute molecules made of more than one bead (mi > 1), we first
restrict the extended equation to recover the monomeric result in
the limit of one bead per solute chain

lim
mi→1

µex,(mi ,mj)

i,j = µex,(1,mj)

i,j . (31)

This requirement ensures that the crGW-EOS is consistent with
the rGW-EOS. The notation for excess chemical potential has been
modified to include the number of beads (mi,mj) in each chain. As
the bond length between the beads of a solute chain increases into
a regime where neighboring beads do not overlap, the chain’s free
energy decouples from its bonding parameter. The system behaves
as if mi monomer beads were being inserted into the monomer fluid
instead of into one bonded chain. This is described as

lim
li>1

µex,(mi ,mj)

i,j (aij, li,mi, aii, ρ0
j ,mj) = miµ

ex,(1,mj)

i,j (aij, li > 1, ρ0
j ,mj).

(32)

In the opposite limit, for the bond length li→ 0, all beads in the chain
occupy the same space. From an enthalpic point of view, they behave
as a single bead with an interaction strength mi times the monomer
interaction strength

lim
li=0

µex,(mi ,mj)

i,j (aij, li,mi, aii, ρ0
j ,mj) = µex,(1)

i,j (miaij, ρ0
j ,mj). (33)

Unlike in the monomeric case, the chain self-interactions impede
the chain from reaching certain geometries. This impediment
increases the free energy of transfer from a reference ideal gas phase

into a liquid phase. In a typical DPD simulation, the effects of
chain self-interaction on the free energy of transfer are small com-
pared to those of bonding. The limiting behaviors of the free energy
of transfer in Eqs. (32) and (33) are independent of the chain
self-interactions.

This assumption, along with the stated limits, allows us to intro-
duce a set of switching functions, (f A, f B), which are independent
of the chain self-interaction parameter. This allows us to switch
smoothly between the two limits given by Eqs. (32) and (33) to cal-
culate the infinite dilution excess chemical potential of a chain fluid
transferring into a solvent fluid

µex,(mi ,mj)

i,j (aij, li, aii, ρ0
j ) = miµ

ex,(1,mj)

i,j (aij, ρ0
j )fA

+µex,(1,mj)

i,j (miaij, ρ0
j )fB. (34)

To determine the correct form for these switching functions, we
performed a multistep procedure—(1) reduce the parameter space
needed to generate and train the fitting functions by using assump-
tions, (2) run two sets of simulations in the pseudo-osmotic Gibbs
ensemble over the remaining parameter space to determine the infi-
nite dilution free energy of transfer of different chain molecules, i
(hexamer, tetramer, trimer, and dimer), into a solvent fluid, j, at sev-
eral solvent densities, ρ0

j (outlined in Sec. II D), and (3) use the data
from step (2) to infer the form of and train the switching functions
to minimize the error in predicted infinite dilution free energy of
transfer. We chose which variables were important for determining
the form and training the switching functions (f A, f B) in Eq. (34)
because the equation varies over a large parameter space. Several
variables were eliminated as the physical properties were evaluated.
The pure-phase density does not affect the free energy of trans-
fer in the infinite dilution limit, so it was eliminated. Similarly, the
solute chain self-interaction constant only indirectly contributes to
the free energy of transfer with no effect on the limiting values of
the free energy of transfer; therefore, it was not included. For the
solute molecule, all other parameters play an important role in the
free energy of transfer.

We computed the ratio of excess chemical potentials of a chain
and one of the monomer units in that chain. As expected, the
ratio approaches the number of beads in the chain as the bond
length increases for each homo-oligomer chain (see Fig. S2 of the
supplementary material). Additionally, the ratio approaches the
value predicted in Eq. (33) in the short bond-length limit. Note that
only the solute chain varied in the number of monomers; the solvent
molecules were only 1-bead chains. Ultimately, our data allowed
us to obtain the switching functions (needed to switch between
the stated limits for the bond length in this case), which follow
a similar behavior to the switching functions [Eqs. (3) and (4)]
used in the rGW-EOS for pressure. Our new switching functions
are

fA(li) =
c1l2i

1 + c2l2i
, (35)

fB(li) =
1

1 + c3l3i
. (36)

To train the equations to the generated data and minimize the max-
imum relative error, several error minimization methods were used,
including a grid scan over initial coefficients. To improve fitting
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characteristics, only bond lengths ranging from li = 0.25 to li = 0.6
were used. For this training data, we used the fitting coefficients
c1 = 1.4851, c2 = 0.46562, and c3 = 2.8239, which yielded a MUPE
of 2.094% and a maximum relative error of 3.675%.

As a first test of our new equation for the free energy of trans-
fer, we used the athermal limit of Eq. (29) along with Eq. (34) with
the fitted switching functions [Eqs. (35) and (36)] to compute the
athermal cross-interaction parameter. We compared the results with
the athermal mixing parameter generated by Eqs. (25) and (27). The
percent deviation between the two results was computed and then
histogrammed (see Fig. S3 of the supplementary material). For this
test, we computed every athermal interaction parameter for each
combination of pure-phase densities ranging from ρ0 = 1.0 to 9.0 in
steps of 1.0, bond lengths ranging from l = 0.2 to 0.7 in steps of 0.05,
and number of beads ranging from m = 1.0 to 8.0 with a reference
pressure of 41.8, a reference density of ρref. = 5.0, and a reference
volume of vref. = 90 Å3, corresponding to the water reference fluid
commonly used in DPD simulations. Combinations where the self-
interaction constant was not between 5.0 < aii < 60.0 were left out
because they likely correspond to non-physical systems. The aij for
athermal mixing generated from the thermal mixing equations is, on
average, slightly lower than the values generated from the athermal
mixing equation. A majority of the atherm

ij (χ = 0) values were within
2% of the athermal cross-interaction parameter. This suggests that
Eq. (34), with the fitted switching functions, provides satisfactory
agreement with simulation data over the studied range of param-
eters at a standard pressure of 41.89 and a density of 5. Note that
Eqs. (30), (35), and (36) must be reconstructed for other reference
pressures and densities.

From the ratios in excess chemical potential, we tested how
the percentage error for each test prediction varies as a function
of three different variables: chain length, bond length, and den-
sity (see Fig. 7). For this analysis, we chose a single chain length
and bond length, then varied the density; we also chose a single

FIG. 7. The error in the ratio of the predicted infinite dilution excess chemical poten-
tial of the chain to that of a monomer in the chain compared with simulation results
as a function of density (red circles), number of beads in the chain (black squares),
and bond length (blue diamonds).

bond length and density, then varied the chain length; finally, we
also chose a single density and chain length, then varied the bond
length.

Overall, the error found with any of the parameters is within
±4%, so the crGW-EOS is doing well at computing the excess chem-
ical potential. However, the error seems to be trending toward a
larger absolute error with longer chains and interestingly, this error
goes from a positive value at low values of chain length to a negative
error at chain lengths of 4 or more beads. The error does not vary too
much with a changing bond length, and it decreases with an increase
in density.

E. Miscibility and UCST
To compare the effects that the infinite dilution excess chem-

ical potential, switching functions, and the χ-parameter have on
the prediction of the upper-critical solution temperature (UCST)
and mixing behavior of binary mixtures, we evaluated the liquid-
liquid equilibria (LLE) behavior of three fictional binary mixtures: a
Vh1–Vh2 mixture, a Vh1–Vo2 mixture, and a Vh2–Vo2 mixture. For
Vh1–Vh2 systems, we expected an equimolar critical composition for
DPD fluids, and for Vh1–Vo2 and Vh2–Vo2 systems, we expected
a non-equimolar critical composition. DPD conflates particle size
and the self-interaction parameters, and this conflation drives the
behavior of the mixtures. We expected that if the equation of state
adapted well to a different number of beads, then the latter two sys-
tems would have nearly identical phase behavior. The parameters
used for these simulations are outlined in Sec. II E.

Simulation results are shown in phase diagrams for the Vh1–
Vo2 and Vh2–Vo2 mixtures (see Fig. 8). The results for the Vh1–Vh2
mixture can be seen in Fig. S4 of the supplementary material. χ−1

does not differ much between the three equations of state.
The differentiating behavior between the three equation of

state approaches becomes more pronounced for the systems where

FIG. 8. Composition phase diagram for the Vh1–Vo2 mixture (top data) and Vh2–
Vo2 (bottom data), where the cross-interaction strength was slowly increased until
the fluids become totally miscible at χ−1

c for each equation of state method: crGW-
EOS (black), rGW-EOS (red), and GW-EOS (green). The data for the Vh1–Vo2
mixture are shifted up by 0.2χ−1 for clarity.
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each molecule has a different pure-phase density. In these sys-
tems, the crGW-EOS has a much higher UCST than the rGW-EOS
and the GW-EOS approaches, which largely agree with each other
for the Vh2–Vo2 and Vh1–Vo2 mixtures. While the phase behavior
for both the Vh1–Vo2 and the Vh2–Vo2 mixtures is similar when
using the crGW-EOS method, the rGW-EOS and GW-EOS meth-
ods approach a much higher UCST for the Vh2–Vo2 mixtures than
for the Vh1–Vo2 mixtures. This demonstrates that the rGW-EOS and
the GW-EOS representations fail to remain consistent as the num-
ber of beads in the molecule changes, while the crGW-EOS remains
consistent even with a change in the number of beads used to repre-
sent one of the species. For chain molecules, the crGW-EOS yields
better results than the rGW-EOS or the GW-EOS methods.

F. LLE of various acetic anhydride/n -alkane mixtures
In this section, we study a real binary mixture made up of

homo-oligomer chains to validate our devised methods for real sys-
tems. To remain consistent with the rGW-EOS development pro-
cess, we chose to simulate the liquid-liquid equilibria behavior of
mixtures of various simple n-alkanes with acetic anhydride, for
which there is a wealth of experimental information in the litera-
ture.47 Specifically, to test the strength of the crGW-EOS approach,
we will study the mixtures of n-hexane/acetic anhydride and
n-octane/acetic anhydride. To study these mixtures, we model each
alkane molecule with a dimeric representation (corresponding to
either 3 or 4 carbon atoms per bead) and the acetic anhydride with
both monomeric and dimeric representations.

The COSMOTherm software40,41 was used to compute the
transfer free energies and volumes for each of the bead types present
in the simulations, as described by Liyana-Arachchi et al. and Tang
et al.11,31 Bead volumes were estimated for each bead type at a
temperature of T = 298 K with the volumes assumed to be inde-
pendent of temperature. We estimated the free energy of transfer of
each bead type at different temperatures by weighing specific por-
tions of the molecule in the COSMOTherm calculations such that
only the molecular surface corresponding to the relevant bead in
the molecule was considered. Equation (28) is then used to compute
the χ-parameter for each bead type which is then used along with
the parameterized form of Eq. (34) to estimate the cross-interaction
parameter between each bead type considered in each simulation.
Self-interaction parameters for each molecule are computed using
the pure-phase molecular density for each molecule type along with
Eq. (14). Because the value of aii depends on the average bond length
and bond strength between beads in the system, and because those
bonding details change as a function of temperature, aii is no longer
independent of the temperature, unlike in the rGW-EOS and the
GW-EOS. Further parameterization and simulation details can be
found in Sec. II F. The results of these simulations are shown in
Fig. 9.

Figure 9 shows that for the simulated hexane/acetic
anhydride(1-bead) mixtures, the alkane rich liquid phase agrees with
the COSMOTherm predictions. But, for the acetic anhydride rich
phase, the model tends to under-predict the amount of hexane in the
system when compared with the COSMOTherm predictions. This
will likely result in this system exhibiting a higher UCST than would
be predicted by COSMOTherm. The experimental data shown in
this plot follow a similar trend where the acetic anhydride rich

FIG. 9. Coexistence curves for the LLE of mixtures of (top) acetic anhydride/
n-hexane and (bottom) acetic anhydride/n-octane. The green circles and trian-
gles represent mixtures where the acetic anhydride is in a 1-bead representation
and the blue squares and down-triangles represent mixtures with a 2-bead rep-
resentation of acetic anhydride. The filled black diamonds are COSMOTherm
predictions.31 The black line in each plot represents the experimental data for
each mixture.47

phase has far less hexane than would be predicted by COSMOTh-
erm. In contrast, the hexane/acetic anhydride(2-bead) simulations
tend to yield a lower UCST. In the alkane rich phase, the model
tends to over-predict the amount of alkane when compared with
the COSMOTherm predictions. In the acetic anhydride rich phase,
more hexane is shown than is predicted with the hexane/acetic
anhydride(1-bead) mixture.

For the octane/acetic anhydride(1-bead) mixture, the DPD
simulations tend to have less acetic anhydride in the alkane rich
phase than is predicted by COSMOTherm. Similar to the hex-
ane/acetic anhydride mixtures in the alkane rich phase, the 2-bead
acetic anhydride model permits more acetic anhydride than
is predicted by the COSMOTherm and more than the acetic
anhydride(1-bead) mixtures at the same temperature. In the acetic
anhydride rich phase, the same type of behavior occurs as we
observed in the hexane/acetic anhydride mixtures, namely, that the
2-bead acetic anhydride models permit more octane than the 1-bead
acetic anhydride models.

While none of the DPD models seem to get the same com-
position as the COSMOTherm predictions, they all adequately
simulate the phase behavior at each temperature with the acetic
anhydride(1-bead) models performing the best. Additionally, each
model outperforms the simulations done by Liyana-Arachchi
et al.,31 despite the crGW-EOS having a larger range of errors in pre-
dicted parameters. This outperformance is likely because the multi-
bead representations are usually better representations of these long
alkanes where shape and steric effects begin to contribute to the
phase behavior and interaction energies of these systems.

The models with the 2-bead representations of acetic anhy-
dride do not show the same LLE phase behavior as the 1-bead acetic
anhydride mixtures. The likely cause is the crGW-EOS model itself.
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Inherent in the prediction of each parameter is a certain amount of
error. Recall that for self-interaction parameters we already observed
that there could be up to an 11.5% deviation in predicted pressure
and simulated pressure for any set of data. Furthermore, the equa-
tions for the cross-interaction parameters tend to under-predict the
strength of the cross-interaction parameter and are likely to have an
error of up to 2.5% according to our previous analysis. The fluctua-
tion in LLE behavior between these 2 models could be explained by
these errors.

IV. CONCLUSIONS
In this work, we extended the developments for the rGW-

EOS to account for the pressure reduction when beads are linked
together to form a homo-oligomer chain. Using TPT1, we derived
and modified an equation. Aided by insights from the creation of
the rGW-EOS, we generated the crGW-EOS, given in Eq. (14). The
crGW-EOS is able to predict the pressure of a homo-oligomer chain
fluid with a MUPE of 2.5% and a relative error absolute values lower
than 11.5% over the ranges of system parameters commonly con-
sidered in DPD simulations. For parametrizing chain fluids, this
marks an improvement of several orders of magnitude over using
the GW-EOS or the rGW-EOS. After developing the crGW-EOS,
we developed a set of combining rules for describing interaction
between two unlike chains by combining Eqs. (25) and (27) for
athermal mixtures, and combining Eqs. (29), (34)–(36) for thermal
mixtures. Our equations for thermal mixtures have a small tendency
to under-predict the cross-interaction parameters, which leads to an
under-prediction of the UCST. Nonetheless, for chain fluids, these
new developments for the athermal and thermal mixing rules rep-
resent an improvement over the methods used for the rGW-EOS
and GW-EOS. Finally, to remain consistent with the rGW-EOS,
the new equations were developed so that the rGW-EOS version of
each equation is recovered in the limit of 1 bead per chain. Unlike
the rGW-EOS work, the simulation protocol is not reported here
because the protocols developed for the rGW-EOS are sufficient, and
the conclusion remains unchanged.31

Future work should extend this framework to study hetero-
oligomer chains and branched chains so a much larger variety of
molecules may be easily and accurately parametrized without the
need for many expensive top-down calculations.

SUPPLEMENTARY MATERIAL

See supplementary material for additional data, parameters,
and figures.
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