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ABSTRACT
Partial molar volumes, energies, and enthalpies can be computed fromNpT-Gibbs ensemble simula-
tions through a post-processing procedure that leverages fluctuations in composition, total volume,
and total energy of a simulation box. By recording the instantaneous box volumes V and instanta-
neousnumberofmoleculesNi of eachofn species forM frames, a largeM × nmatrixN is constructed,
as well as theM × 1 vector V. The 1 × n vector of partial molar volumes V̄may then be solved using
N · V̄ = V. A similar construction permits calculation of partialmolar energies usingM instantaneous
measurements of the total energy of the simulation box, andN · Ū = U. Partialmolar enthalpiesmay
bederived from Ū, V̄, andpressurep. Thesepropertiesmaybeused to calculate enthalpy andentropy
of transfer (absorption, extraction, and adsorption) for species in complex mixtures. The method is
demonstrated on three systems in the NpT-Gibbs ensemble: a highly compressible natural gas con-
densate of methane, n-butane, and n-decane, the liquid-phase adsorption of 1,5-pentanediol and
ethanol onto the MFI zeolite, and a relatively incompressible mixture of ethanol, n-dodecane, and
water at liquid-liquid equilibrium. Property predictions are compared to those from numerical dif-
ferentiation of simulation data sequentially changing the composition and from equations of state.
Themethod can also be extended to reaction equilibria in a closed systemand is applied to a reactive
first-principles Monte Carlo simulation of compressed nitrogen/oxygen.
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1. Introduction

Partialmolar properties are thermodynamic quantities of
mixtures that indicate how extensive properties vary with
changes in molar composition when temperature and
pressure are kept constant [1–3]. Partial molar properties
can be leveraged to study the thermodynamics of mul-
ticomponent mixtures (especially liquid) and to design
new chemical and biochemical processes [4–11]. Sep-
aration systems [12], physisorption and chemisorption
processes, and reactive systems [10,11,13] can benefit
from understanding partial molar properties.
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The partial molar property, X̄i is a measure of the
response of the extensive property X to changes in the
number of molecules Ni of species i as Nj�=i, T, and p are
held constant (Equation (1)). Generally, X̄i is a function
of T and p and may also depend on the composition of
the fluid.

X̄i =
(

δX
δNi

)
T,p,Nj�=i

(1)

Experimentally, partial molar properties are measured
using numerical differentiation. Small amounts of a pure
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component are added to a mixture and then a change in
volume or enthalpy is measured with calorimetry [14].
Alternatively, an equation of state (EOS) is fit to exper-
imental data, and partial molar properties are evaluated
by solving EOS calculations [15].

Thermodynamic properties can also be predicted
using molecular simulation, with tools such as molecu-
lar dynamics (MD) and Monte Carlo (MC) simulations.
MD is most conveniently applied for closed systems, and
a trajectory is generated according to the laws of New-
tonian physics. In MC, the Markov chain trajectory is
generated stochastically. Multiple statistical mechanical
ensembles are available in MC simulations; the Gibbs
ensemble (GEMC) [16–18] is particularly valuable for
its ability to directly simulate coexisting phases in equi-
librium. For example, to simulate vapour-liquid equilib-
rium (VLE) for a single-component system, a two-box
NVT-GEMC simulation uses a low-density vapour box
in equilibrium with a high-density liquid box. Within
each box, MC moves sample the distribution of posi-
tions, orientations, and conformations of the molecules.
Volume moves adjust the vapour/liquid volume fraction
while keeping the total volume fixed, and molecules are
swapped between boxes to reach mechanical and chem-
ical equilibrium. These computational techniques can be
predictive of experimental observations when accurate,
transferrable force fields are used, such as TraPPE [19],
OPLS [20], and CHARMM [21].

Several methods have been developed for predict-
ing partial molar properties in molecular simulations.
The experimental method discussed previously, numer-
ical differentiation, can also be used to compute partial
molar properties via simulation by numerically differen-
tiating the total property while changing the number of
molecules of the component of interest. Formulticompo-
nent systems, thismethod is not computationally efficient
because of the number of independent simulations. Its
accuracy depends strongly on the uncertainty of the total
property, requiring long simulations [2,22–26].

In the direct method, Frenkel et al. used the Widom
test particle insertion method (WTPI) [27] alongside
molecular simulation to directly compute partial molar
volume and enthalpy in a single MC simulation in the
NpT ensemble [24,25]. However, this approach is inef-
ficient for dense systems, and impossible when trying to
insert large molecules [24,28–32].

Alternatively, the difference method, also based on
WTPI, can be used to avoid some of the sampling issues
of the WTPI method by using identity changes between
two molecule types [24,25]. However, problems with this
method occur if the molecules are very different in size
or have very different interactions with the surrounding
molecules.

Recent work by Rahbari et al. showcases Continuous
Fractional Component Monte Carlo (CFCMC), which is
used to facilitate transfer of large molecules into dense
systems [33]. In a CFCMC simulation [34–39], particle
insertions take place gradually, which improves the effi-
ciency of molecule exchanges. This method also allows
computation of chemical potentials without the use of
test particle methods, and post-processing is used to
compute the chemical potential or its derivatives [33].

An alternative paradigm is to use Kirkwood-Buff (KB)
integrals [1,22,40–42]. Unlike other theories, KB inte-
grals do not invoke assumptions about pairwise additivity
(i.e. other theories assume that the total potential energy
is only a sum of all two-body interactions within the
system, neglecting the contribution of the many-body
terms). However, KB integrals cannot be used for ternary
closed systems in which two of the three species have
the same mole fractions [1]. A unique advantage of KB
integrals is that in some cases, they permit calculation
of partial molar properties of closed systems [22], such
as those sampled using molecular dynamics, by dividing
the system into multiple sub-systems, tracking molecule
populations and interactions in each subsystem, and cor-
recting for finite-size effects.

Here we present an alternative method using multiple
linear regression (MLR) to compute partial molar prop-
erties from GEMC simulation results. Benefits of this
method include: (1) With just a few lines of code, partial
molar properties of all species in a multicomponent mix-
ture can be computed simultaneously. (2) This approach
is generalisable to simulations in constant-p ensembles
where the number of molecules fluctuate, including reac-
tive closed systems. (3) No special setup, type of move,
or accounting of specific interactions is required. (4)
The property data (instantaneous values of V, U, and
Ni) are available at no cost throughout the simulation,
and the data size is small compared to particle coordi-
nates needed for computation of radial distribution func-
tions. (5) Legacy simulation data may be post-processed,
so long as instantaneous macroscopic properties (V, U,
Ni) have been recorded throughout the simulation tra-
jectory. (6) No restrictions on the types of interactions
are imposed. We demonstrate this technique for sim-
ulations using pair-wise additive force fields as well as
using Kohn-Sham density functional theory; only the
total volume and/or energy of each simulation box are
required.

2. Partial molar properties frommultiple linear
regression

Instead of beginning from the derivative definition
of the partial molar property (Equation (1)), we use
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the integral form that gives the total property as a
composition-weighted sum of the partial molar prop-
erties (Equation (2)), such as the partial molar volume
(Equation (3)). This formulation enables a system-of-
equations approach: for a mixture with n species, use
n equations to solve for n unknowns, as shown in
Equation (4) for partial molar volumes in a ternary mix-
ture; measurements at only three compositions a, b, and
c are sufficient to compute these properties, under the
assumption that they are independent of composition
over the set of Ni investigated.∑

i
NiX̄i = X (2)

∑
i
NiV̄i = V (3)

Na
1 V̄1 + Na

2 V̄2 + Na
3 V̄3 = Va

Nb
1 V̄1 + Nb

2 V̄2 + Nb
3 V̄3 = Vb (4)

Nc
1V̄1 + Nc

2V̄2 + Nc
3V̄3 = Vc

Consequently, for an n-component mixture, V̄i can be
computed by performing nmeasurements (whether from
experiment or simulation) at n compositions to obtain
n values each of V and Ni. However, if any two state
points are particularly close, then the system of equa-
tions becomes ill-conditioned; if a pair of V, N, or xi are
equal, then two equationswould becomedependent. This
creates a dilemma because partial molar properties are
composition-dependent. Because Equation (4) requires
measurements at multiple state points, the correspond-
ingmeasures of V̄i correspond to some average across the
domain of these state points, assuming that V̄i is invari-
antwith composition.Narrowing this domain necessarily
makes equations (4) more ill-conditioned; selecting the
‘best’ set of mixtures would not be trivial, especially in a
high-dimensional space.

However, molecular simulations have an opportunity
here not available with experiment. The fluctuations of V
and Ni within a single simulation can be used to obtain
V̄i using Equation (5), where N is the M × n matrix of
instantaneous mole fractions forM frames and n species,
V̄ is the 1 × n vector of partial molar volumes V̄i, and
V is theM × 1 vector of instantaneous V. Equation (5) is
an overdetermined system ofM instances of Equation (3)
for n unknowns, solved using multiple linear regression.

N · V̄ = V V̄ = (NTN)−1NT · V (5)

Replacing V with U in Equation (5) gives partial molar
internal energies Ūi (Equation (6)). With Ūi and V̄i and
the specified pressure p, partial molar enthalpies H̄i can
be computed using H̄i = Ūi + pV̄i (Equation (7)). Alter-
natively, H̄i (Equation (8)) can be computed directly

using the instantaneous enthalpy of a given simulation
frame H=U+pV, from instantaneous measures of U
and V. A comparison of the instantaneous and ensemble
average methods is discussed in Section 4.1.2, and also in
recent work by Eggimann et al. [43].

N · Ū = U Ū = (NTN)−1NT · U (6)

H̄ = Ū + pV̄ (7)

N · H̄ = H H̄ = (NTN)−1NT · H (8)

We also propose a method to calculate enthalpies and
entropies of transfer,�H̄tr and�S̄tr, between two phases
in equilibrium. The energy cost to remove one molecule
of species i from phase I, holding T, p, andNj�=i constant,
is −ŪI

i , and the energy gained by phase II upon addi-
tion of one molecule of species i from phase I, holding T,
p, and Nj�=i constant, is ŪII

i . Consequently, Equation (9)
indicates the energy change that would occur upon trans-
fer of this molecule between the two phases, �Ūtr,i. This
is valid so long as the perturbation is sufficiently small
such that partial molar internal energies of all species do
not change during the transfer (see extended derivation
in supporting information).

�Ūtr,i = ŪII
i − ŪI

i (9)

�H̄tr,i is calculated in the same way, except now the pV
work must be accounted for (Equation (10)). Although
the pressure is set as thermodynamic constraint for both
phases, the incremental change in volume due to the
transfer of the molecule is different for each phase, and
this will be captured in �V̄tr,i (Equation (11)). Special
considerations must be taken when treating a constant-
volume simulation box as encountered during simula-
tions probing adsorption in an incompressible sorbent
material (see extended derivation in Supporting Infor-
mation and discussion in Section 4.3).

�H̄tr,i = �Ūtr,i + p�V̄tr,i = H̄II
i − H̄I

i (10)

�V̄tr,i = V̄II
i − V̄I

i (11)

�Ḡtr,i is the incremental change in excess free energy due
to transferring one molecule between the phases, hold-
ing T, p, and Nj�=i constant. This can be calculated using
the ensemble averaged number densities ρi of species
i in each phase, along with the gas constant R and T
(Equation (12)) [44]. By using�Ḡtr,i = �H̄tr,i − T�S̄tr,i,
the incremental change in excess entropy upon transfer-
ring a molecule of species i between the phases can also
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be computed.

�Ḡtr,i = −RT ln
(

ρII
i

ρI
i

)
(12)

For a single-component system at vapour-liquid equi-
librium, these relationships simplify to the well-known
relationships for free energy, enthalpy, and entropy of
vapourisation [2].

MLR may also be applied to a reactive closed sys-
tem. As long as all species undergo reaction and Ni and
V fluctuate, partial molar properties may be computed.
Volumes, energies, and enthalpies of reaction may be
computed from differences in these partial properties.

We introduce this method by calculating these prop-
erties in Monte Carlo simulations in the NpT-Gibbs
ensemble for phase and adsorption equilibria (includ-
ing a fixed-volume sorbent phase for the latter case) and
the NpT ensemble for reaction equilibrium in a single
phase. In addition, we also assess the MLR approach for
NVT-Gibbs ensemble simulations.

3. SimulationMethods

3.1. VLE of natural gas condensate

For a three-component hydrocarbon mixture consisting
of methane, n-butane, and n-decane, Monte Carlo sim-
ulations in the isochoric and isobaric versions of the
Gibbs ensemble at T=333K [16–18] were performed
using the in-house Monte Carlo for Complex Chemi-
cal Systems–MN software (MCCCS-MN) [45]. Monte
Carlo (MC) move probabilities were distributed as fol-
lows: volume moves were attempted with a probabil-
ity of 1/0.3/Ntotal, and maximum displacements were
adjusted to yield a target acceptance rate of 0.3, to
obtain approximately 1 accepted volume move per MC
cycle [46]. Coupled-decoupled [47] configurational-bias
Monte Carlo [48–50] moves were attempted with a prob-
ability of about 30%, and 55% of moves were transla-
tions (proportionally distributed amongmolecule types),
and 15% of moves were rotations (proportionally dis-
tributed between n-butane and n-decane). Interbox swap
moves were attempted with a probability of around 0.5-
1%, in order to achieve approximately 1 accepted swap
move per MC cycle. Inter- and intramolecular interac-
tions were described using the TraPPE force field for
n-alkanes [19]. Simulations were initialised by randomly
positioning molecules on a grid, followed by 2 kMC
cycles of melting at 3000K, 3 kMC cycles of cooling at
the set temperature, and at least 50 kMC cycles of equi-
libration. Production runs followed for up to 100 kMC
cycles for 64 independent simulations. The volume,
energy, and composition of each box were output every

MC cycle, while pressures were computed every 10MC
cycles.

Equation of state (EOS) calculations were performed
using AspenPlus V8.6 using the Peng-Robinson equation
of state [51] both with and without binary interaction
parameters, taken from Knapp et al. [52]. First, a pT
curve for the mixture at the base liquid composition was
generated for finding an initial estimate of the bubble
point pressure at T=333K. Then, at that pressure and
temperature, the vapour composition was calculated by
simulating a flash process. Once the temperature, pres-
sure, and vapour composition were determined using the
above steps, partial molar properties were calculated by
simulating a single stream separately for the two phases.
For each phase, the molar flow rate of each component
was individually perturbed to calculate the partial molar
properties. The partial molar properties for both phases
were found be numerically stable for perturbations of
0.01% and 0.001% of the molar flow rate.

3.2. Liquid-liquid equilibrium

Harwood et al. [53] carried out Gibbs ensemble Monte
Carlo simulations for the liquid-liquid equilibrium
of ethanol, water, and n-dodecane at T=333K and
p=100 kPa. The simulated systems contained 600
ethanol, 300 n-dodecane, 6 n-hexane (to facilitate n-
dodecane transfers through identity switch moves [54]),
and either 100, 300, or 500 water molecules. Compete
simulation details are provided in Ref. [53].

3.3. Liquid-phase adsorption

Sun et al. [55] carried out Gibbs ensemble Monte
Carlo simulations for solution-phase adsorption of 1,5-
pentanediol and ethanol into all-Si MFI zeolite at
T=323K and p = 100 kPa. Two state points from this
work are analysed here: a mixture with 452 ethanol and
48 diol molecules and a mixture with 208 ethanol and
198 diol molecules, where the sorbent phase consisted of
12MFI unit cells for bothmixtures. Complete simulation
details are provided in Ref. [55].

3.4. Reaction equilibria

Fetisov et al. [56] performed reactive first principles
Monte Carlo simulations in the isothermal-isobaric
ensemble, for a system of 32N and 64O atoms at
T=3000K and p = 30GPa, using the BLYP density
functional [57,58] with the third-generation Grimme
dispersion correction (D3) [59]. In this simulation,
molecules are treated as aggregates of atoms, and chemi-
cal equilibrium is sampled usingMCmoves such as atom
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and molecule translations, molecule rotations, bond
length changes, and atom identity exchanges. While the
total number of N and O atoms are conserved, the pop-
ulation of molecules fluctuates as configuration space is
sampled. After equilibration, 32 independent simulations
were performed for ∼4000MC steps each. Complete
simulation details are provided in Ref. [56].

4. Results

4.1. Natural Gas Condensate

We introduce and validate this method using a model
natural gas condensate characterised experimentally by
Urlic et al. [60]. Urlic et al. measured bubble and dew
points for amodel natural gas condensate with xC1 = 0.6,
xC4 = 0.31 and xC10 = 0.09. At T = 333K, they mea-
sured a bubble point pressure of 17.4MPa. After per-
forming a few iterations of VLE simulations in theNVT-
Gibbs ensemble, we identified simulation settings that
achieved a similar liquid composition, so as to compare
our bubble point properties with those of Urlic et al.

The reference case (enabling calculation of the bub-
ble point pressure) for this study uses an NVT-Gibbs
ensemble simulation of cubic vapour and liquid boxes,
each with initial box lengths of 55Å. After equilibration,
the actual liquid composition was found to be slightly
enriched in n-decane relative to the target composition
by Urlic et al. [60], with xC1 = 0.570 ± 0.004, xC4 =
0.310 ± 0.002, and xC10 = 0.120 ± 0.002.Using the pres-
sure measured in the vapour box of theNVT-Gibbs sim-
ulation, p = 16220 ± 40MPa, simulations in the NpT-
Gibbs and NpT ensembles were also run for 100 kMC
cycles. Partial molar properties from the GEMC simu-
lations are compared to those calculated using numeri-
cal differentiation of single-box simulations in the NpT
ensemble, with incremental changes in Ni holding Nj�=i
constant (Equation (1), and Figure S1 in the Supporting
Information).

MLR presents a challenge in assigning uncertainty,
because the simulation data is highly correlated. To
obtain 95% confidence intervals for these properties, we
separately compute partial molar properties for each of
64 independent simulations, then compute the mean and
standard deviation of these independent estimates. The
standard deviation is multiplied by 2/

√
N − 1 to give the

95% confidence intervals; error propagation is not used.
For finite-sized systems, correlations may influence

the ensemble averages of derived properties such as the
compressibility factor, Z [43], or in this case, H. To
explore this closely, we compute H and H̄i two ways.
H̄i,inst are computed using Equation (8), after comput-
ing the mechanical observable Hinst using instantaneous

measures of U and V for each frame, and p is taken as
either the instantaneous value for NVT-Gibbs simula-
tion or as the specified thermodynamic constraint for
NpT-Gibbs simulations. Alternatively, H̄i,ave assumes no
correlation between U and V, and is computed using
Equation (7) after V̄i, Ūi, and p have been computed
separately. Parity plots and histograms of the MLR in
the NpT-Gibbs ensemble are provided in Figure 1, and
thermodynamic properties are compiled in Table 1. Cor-
relations among V, U, and p are shown in Figure S2
in Supporting Information. Energies and enthalpies of
transfer are reported in Table 2. System size effects were
also examined, and are presented in Section 2.4 of the
Supporting Information.

For both the liquid and vapour phases, MLR does an
excellent job matching the regressed volume and inter-
nal energy to the simulated volume, as shown in the
parity plots and histograms of Figure 1. The instanta-
neous enthalpy is not described well in the liquid phase;
although MLR necessarily reproduces the correct mean
value, the histogram is significantly narrower for the
regressed distribution, suggesting that MLR struggles to
capture the low- and high-enthalpy frames (Figure 1(g)
and Figure 1(o)). This is a consequence of major fluc-
tuations in the instantaneous pressure which is used for
calculating the instantaneous enthalpy, which lead to
a large difference between the simulation and regres-
sion results. MLR performs much better for predicting
simulation enthalpies calculated frame-by-frame using
the ensemble-average p and the instantaneous V and U
(Figure 1(h,p)), in which p is set precisely and assumed
to be constant. MLR still misses the low- and high-
enthalpy tails of the distribution of Have (MLR shifts the
low-enthalpy tailHave < −0.6 × 106 K into enthalpies of
around −0.6 × 106 K (Figure 1(h))), but not as severely
asHinst, suggesting that damping out the extreme fluctu-
ations in p improves the performance of the MLR.

The partial molar properties are reported in Table 1.
Several non-intuitive trends are worth noting. The par-
tial molar volumes and energies are not proportional to
the number of LJ sites in eachmolecule; they are not even
monotonic. For example, in the liquid phase, n-butane
has a smaller partialmolar volume compared tomethane.
In the vapour phase, both n-butane and n-decane have
smaller partial molar volumes compared to methane.
This has been noted before - largemolecules in supercrit-
ical fluids can even give negative partial molar volumes
[61], and the majority component here, methane, is far
above its critical point.

4.1.1. Validation with numerical differentiation
To validate the MLR methodology, partial molar prop-
erties for the natural gas condensate system were also
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Figure 1. Parity plots and histograms illustrating the quality of the multiple linear regression for the liquid phase (a–h) and the vapour
phase (i–p) of the model natural gas condensate in the NpT-Gibbs ensemble. Hinst is calculated using the instantaneous U, V, and p for
each simulation frame, while Have is calculated using instantaneous U and V and the ensemble average p. Mean absolute deviations
(MAD) of V are 2.1 and 5.4 nm3 for the liquid and vapour. MAD of U are 2.0 × 104 and 1.1 × 104 K for the liquid and vapour. MAD of Hinst
are 5.9 × 104 and 2.7 × 104 K for the liquid and vapour. MAD of Have are 2.2 × 104 and 1.7 × 104 K for the liquid and vapour.

calculated using numerical differentiation (ND). The
properties were calculated in theNpT ensemble using the
MCCCS-MN software [45].

First, the coexistence pressure and compositions were
determined for each phase from the NVT-Gibbs ensem-
ble simulations. Then, in theNpT ensemble, molecules of
one species Ni were removed or added to the simulation
box while Nj�=i, T, and p were held constant. 〈V〉, 〈U〉,
and 〈H〉 = 〈U〉 + 〈p〉 · 〈V〉 were measured at 5 or 6 dif-
ferent compositions, and a linear equation was fit to this
data to measure the slope of the thermodynamic prop-
erty with respect to number of molecules of that species

to calculated partial molar properties. Regression results
are shown in Figure S1.

The ND results are in excellent agreement with MLR
for NpT-Gibbs, and reveal the inadequacy of the NV
T-Gibbs ensemble for predicting partial molar properties
(Table 1). Uncertainties for the MLR method are smaller
for partialmolar properties ofmethane and larger for that
of butane and decane compared to uncertainties from
ND. MLR provides computational savings compared to
ND. For a ternary system, independent simulations must
be performed at 7 different compositions (themean com-
position, plus positive and negative perturbations in Ni
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Table 1. Thermodynamic properties of a model natural gas condensate at T = 333 K.

Liquid Vapour

NVT-Gibbs NpT-Gibbs NpT NVT-Gibbs NpT-Gibbs NpT

NC1 56115 58017 561 71515 69617 715
NC4 3035 3085 303 1215 1165 122
NC10 116.56 117.05 117 8.56 8.05 8

xC1 0.5704 0.5744 0.5719 0.8483 0.8513 0.8462
xC4 0.309917 0.3082 0.3089 0.1422 0.1402 0.1444
xC10 0.120019 0.1182 0.1193 0.00984 0.00954 0.0095

p [kPa] 1623050 1624020 1623519 1622040 1623010 162246
V [nm3] 1573 1613 157.234 1753 1714 175.906
U [K× 103] −7068 −7169 −708.13 −2288 −2209 −226.8610
EpV ,inst [K× 103] 1843 1894 2064 2015
EpV ,ave [K× 103] 1853 1904 184.92 2064 2015 206.709
Hinst [K× 103] −5215 −5275 −224 −183
Have [K× 103] −5215 −5265 −523.24 −224 −183 −20.1615
V̄C1 [L/mol] 0.095412 0.08929 0.08899 0.141317 0.15365 0.154514
V̄C4 [L/mol] 0.0792 0.092719 0.094018 0.0349 −0.0183 −0.018415
V̄C10 [L/mol] 0.1464 0.1404 0.140317 0.02117 −0.24912 −0.2575
ŪC1 [kJ/mol] 0.077 −0.644 −0.607 −1.354 −1.092 −1.064
ŪC4 [kJ/mol] −12.7919 −11.3615 −11.3515 −7.22 −8.2711 −8.474
ŪC10 [kJ/mol] −17.54 −17.84 −18.0614 −6.25 −12.94 −12.6611
H̄C1,inst [kJ/mol] 0.867 0.846 1.164 1.402
H̄C4,inst [kJ/mol] −10.1018 −9.9019 −7.62 −8.5313
H̄C10,inst [kJ/mol] −15.14 −15.64 −10.45 −16.95
H̄C1,ave [kJ/mol] 1.629 0.815 0.8511 0.956 1.412 1.476
H̄C4,ave [kJ/mol] −11.52 −9.8518 −9.7721 −6.74 −8.5514 −8.766
H̄C10,ave [kJ/mol] −15.14 −15.54 −15.8919 −5.97 −16.95 −16.7718

Note: NVT-Gibbs simulations were performed using an initial box volume of 332.75 nm3. NpT-Gibbs and NpT simulations were performed at p= 16220MPa. All
simulations used 100,000MC cycles of production. Uncertainties reported are 95% confidence intervals from 64 independent measurements of each quantity.
Partialmolar properties forGEMCsimulations are calculatedusingMLR; partialmolar properties forNpT simulations are calculatedusingnumerical differentiation
from 5 state points around the centre (6 for n-decane).

Table 2. Comparison of observable thermodynamic properties
from MC simulation to those calculated using the PR EOS, both
with and without the binary interaction parameters kij .

PR with kij PR without kij TraPPE

Pressure [kPa] 16900 15800 1622040
Vapour Composition C1 0.8543 0.8642 0.8513

C4 0.137 0.1285 0.1402
C10 0.0087 0.0073 0.00954

ρliq [kg/m3] 433.2 433.2 453.939
ρvap [kg/m3] 192.2 174.5 184.125

Liquid V̄i [L/mol] C1 0.0881 0.0881 0.08929
C4 0.1091 0.1091 0.092719
C10 0.1502 0.15 0.1404

Vapour V̄i [L/mol] C1 0.144 0.155 0.15365
C4 −0.01270 −0.02568 −0.0183
C10 −0.211 −0.2926 −0.24912

�Ūtr [kJ/mol] C1 0.650 0.655 0.455
C4 −3.754 −4.731 −3.12
C10 −7.670 −9.283 −4.95

inst ave
�H̄tr [kJ/mol] C1 −0.291 −0.395 −0.567 −0.607

C4 −1.694 −2.601 −1.42 −1.32
C10 −1.563 −2.292 1.46 1.46

Note: Molecular simulations with the TraPPE force field have both the instan-
taneous and the ensemble average observables reported for�H̄tr .

for all three species) for finding the partial molar prop-
erties of the three components in one phase. We per-
formed simulations at 14 different compositions formore
robust statistics (5, 5, and 6 incremental compositions

for methane, n-butane, and n-decane, respectively).
After performing the NVT-Gibbs simulation, either
NpT-Gibbs or NpT simulations could be used to com-
pute partial molar properties. For this system, single-box
NpT simulations are faster but require more parallel sim-
ulations than two-box NpT-Gibbs simulations; overall,
we find that the MLR method is 4.5 and 9 times faster
thanNDwith 7 or 14NpT simulations, respectively (with
the same number of MC cycles). If the reference simu-
lation is in the NpT-Gibbs ensemble, then partial molar
properties may be calculated at no additional cost.

4.1.2. Uncertainty analysis
The first assessment of the quality of these regressions
is the ability of the partial molar properties to describe
the total properties. Table S1 shows the contributions of
each component to the total V, U, and H for both the
NVT-Gibbs and NpT-Gibbs data sets.

All partial molar properties are consistent with the
total properties in both phases for both ensembles,
within statistical uncertainty. In the liquid phase, all three
species contribute to the total volume, but in the vapour
phase, both xC10 and V̄C10 are very small, so the contri-
bution of n-decane is negligible; even smaller than the
uncertainty inVbox. the 95% confidence interval for V̄C10
is much smaller than that for Vbox; a broader range of
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values could close the volume balance in the ensemble
average of V ; when MLR minimises the error between∑

V̄iNi and Vbox across all frames of the simulation, a
more precise estimate of Vbox is found than that con-
strained by the ensemble average V.

WhileNVT-Gibbs andNpT-Gibbs have similarV, the
relative contributions from the components are signifi-
cantly different, especially in the vapour phase. Both data
sets are self-consistent, but only the NpT-Gibbs simula-
tion agrees with the ND validation data. This also holds
for U, Hinst, and Have.

4.1.3. Comparison to equations of state
Thermodynamic properties calculated using the Peng-
Robinson equation of state [51] are provided in Table 2.
Experimentally, the bubble point pressure is 17400 kPa,
which is greater than all predicted results: PR with kij
gives p=16900 kPa, GEMC/TraPPE gives p = 16220 ±
40 kPa and PR without kij gives p=15800 kPa. The PR
EOS is improved by adding binary interaction param-
eters, but at the cost of requiring experimental data in
multicomponent systems. Experimental measures of liq-
uid and vapour density, and vapour composition, are not
available at this state point.

The liquid density from GEMC/TraPPE is 5% greater
than that of the PR EOS (kij does not affect the liq-
uid phase density, nor is its density affected by changes
in pressure). The liquid phase V̄i from MC are simi-
lar to PR EOS with and without kij, with relative devi-
ations of 1% for C1 (which has the largest contribu-
tion to the total volume), 17% for C4, and 7% for
C10. More substantial differences are seen in the vapour
phase as the vapour composition and pressure are quite
different.

The vapour density varies by up to 10% among all
three cases, following the trend in vapour pressures, with
the lowest ρ and p for PR EOS without kij and the highest
for PR EOS with kij. The vapour phase density predicted
by GEMC/TraPPE is in between that of PR EOS with and
without kij. V̄i of C1 is within 10% for all three cases.
However, for C4 and C10, V̄i vary significantly between
the two EOS models and the MC simulation. In the
vapour phase, partial molar properties are significantly
more sensitive than bulk properties. Even within the PR
EOS, addition of kij parameters changes the vapour den-
sity by just 8%, but V̄i and H̄i change by a factor of
two in some cases. Major changes in V̄i of C4 and C10
do not dramatically affect V because V̄C4 and xC10 are
close to zero, so large changes in density can dramatically
change V̄i.

The absolute values of Ūi, and H̄i, are quite differ-
ent between GEMC/TraPPE and the PR EOS because

they use different reference states. However, the dif-
ferences between the vapour and liquid properties can
be compared directly (Table 2). For these properties,
TraPPE qualitatively agrees with PR, giving similar mag-
nitudes and trends in �Ūtr and �H̄tr, with the excep-
tions of �Ūtr,C10 which is equal to −4.9 ± 0.5 kJ/mol
but the highly negative V̄i of n-decane raises the con-
tribution of pV energy and leads to a positive �H̄tr,C10
(1.42 kJ/mol). Interestingly, while �Ūtr,i shows that
transferring n-butane or n-decane into the liquid is ener-
getically favourable, with �Ūtr,C4 = −3.1 ± 0.2 kJ/mol
and �Ūtr,C10 = −4.9 ± 0.5 kJ/mol, methane is unusual;
it experiences an energetic penalty of 0.45 ± 0.05 kJ/mol
when it transfers from the vapour to the liquid, even
though the liquid phase has a much higher density
of interaction sites. Moreover, since both butane and
n-decane have negative V̄i in the vapour phase, the
enthalpies of transfer these two species are higher than
the respective energies of transfer and vice-versa for
methane.

4.2. Liquid-liquid equilibrium

To demonstrate this technique in a liquid-liquid equilib-
rium (LLE) system, we considered the ternary ethanol/n-
dodecane/water mixture, as reported in Harwood et al.
[53], with xtotalH2O = 0.1, xtotalH2O = 0.25, and xtotalH2O = 0.36.
Mixtures partitioned into ethanol-rich and n-dodecane-
rich phases, reaching average compositions as shown in
Table S3 in Supporting Information.

MLR (Equations (5)–(8)) is used to compute the par-
tial molar properties. The quality of the regression is
shown in Figure 2. The bimodal distributions indicate
that the phase space was not evenly sampled; nonethe-
less, MLR accurately fits V and U. For this liquid, the
pV contribution to H is negligible, so U ≈ H. Partial
molar volumes and internal energies for the three overall
compositions are reported in Table 3.

For these mixtures, the partial molar volumes are rel-
atively insensitive to the composition, but partial molar
enthalpies are strongly composition dependent. V̄EtOH
ranges from 0.0611 to 0.0648 L/mol (6% change), V̄C12
ranges from 0.23329 to 0.245 L/mol (5% change), and
V̄H2O ranges from 0.018 to 0.023 (22% change). ŪEtOH
and H̄EtOH range from −33.8 kJ/mol to −30.3 (10%
change), while ŪC12 and H̄C12 range from−6.1 kJ/mol to
−16.53 as C12 concentration increases. ŪH2O and H̄H2O
range from−39.1 to−32.3 kJ/mol as H2O concentration
increases (Table 3).

The enthalpy of transfer can also be calculated
for each species as it transfers from the C12-rich
liquid into the EtOH-rich liquid (Table 3). For all
species, �Utr,i ≈ �Htr,i because the pV contribution
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Figure 2. Parity plots and histograms illustrating the quality of themultilinear regression for the EtOH-rich liquid in the LLE system, with
xtotalH2O = 0.1. Mean absolute deviations of V and U are 0.52 nm3 and 2.2 × 104 K, respectively.

Table 3. Partial molar volumes V̄i [L/mol], partial molar inter-
nal energies Ūi and enthalpies of transfer �H̄tr,ave [kJ/mol] for
components in the LLE systems.

xtotalH2O Phase EtOH n-Hexane n-Dodecane Water

V̄i 0.1 EtOH-rich 0.06126 0.1383 0.2402 0.0193
C12-rich 0.06369 0.1343 0.23354 0.0235

0.25 EtOH-rich 0.060819 0.1435 0.2455 0.0194
C12-rich 0.06488 0.1395 0.2332912 0.0234

0.36 EtOH-rich 0.061113 0.1434 0.2427 0.018015
C12-rich 0.064611 0.1353 0.2333410 0.0255

Ūi 0.1 EtOH-rich −33.83 −10.113 −11.111 −37.118
C12-rich −31.56 −12.917 −16.53 −32.341

0.25 EtOH-rich −33.56 −4.143 −6.125 −38.512
C12-rich −30.38 −112 −16.5311 −33.136

0.36 EtOH-rich −33.05 −4.225 −5.731 −39.16
C12-rich −30.44 −11.98 −16.515 −332

0.1 −2.37 32 51 −54
�H̄tr,ave 0.25 −3.111 76 102 −64

0.36 −2.510 73 113 −62

Note: H̄i ≈ Ūi because the pV contribution to enthalpy is negligible.

is negligible. Transferring an EtOH molecule from the
C12-rich phase to the EtOH-rich phase is enthalpi-
cally favourable (�Htr,ave,EtOH varies from −3.1 ± 1.1

to −2.3 ± 0.7 kJ/mol). Likewise, transferring an n-
dodecane molecule is enthalpically unfavourable (and
more unfavourable in systems with more water content).
While the trace species H2O and n-hexane have larger
uncertainties, they follow the same trends as EtOH and
C12, respectively.

With three different compositions studied in the LLE
system, Equation (4) may be used to solve for the partial
molar properties using a system-of-equations approach
(Table S4). This approach is not as effective as MLR;
details are provided in the Supporting Information.

4.3. Partial molar properties of adsorption
equilibria

The MLR construction given in Equation (5) does not
require that all Ni and V are fluctuating; the MLR is
necessarily invalid only when two or more are invariant.
Consequently, if one species is not permitted to swap, as
in the osmotic ensemble [17], in which Nwater is fixed,
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while V and all other Ni may vary, then MLR may still
be used to measure V̄i for all species. In a sense, V̄i
are measured for all swapping species, and V̄i for the
fixed species is calculated through the difference from
the total volume. However, if two or more species are
not permitted to swap, then the relative contributions of
these will be impossible to define; the matrix N becomes
rank-deficient, and the MLR will fail.

For simulations with a simulation box of constant vol-
ume, such as adsorption in the NpT-Gibbs ensemble
with a fixed adsorbent box, the internal energy fluctuates,
and Ūi and �Utr,i can be calculated using Equations (6)
and (9). Consequently, the enthalpy of adsorption may
be calculated using Equation (10), �Htr,j = �Utr,j +
p�Vtr,j. However, because the adsorption box volume is
fixed, �Vtr,j only depends on V̄i in the fluid phase; the
contribution from estimating V̄i in the adsorbed phase
is zero (see Supporting Information). This is also the
case for grand canonical Monte Carlo (GCMC) simu-
lations, which fix the chemical potential μ, T, and V.
Additional care must be taken if the GCMC simulation
is sampling VLE; if the same box explores both liquid
and vapour phases at coexistence, these two populations
would need to be separated prior to applying MLR, or
Ūi would represent an average internal energy of both
phases.

We apply MLR to the liquid-phase adsorption of 1,5-
pentanediol and ethanol into the MFI zeolite at 323K
and 1 bar [55]. Table 4 and Figure 3 show the MLR
results. The major difference between using MLR in a
fixed simulation box as compared to a flexible one, is
that only one volume is sampled in the adsorbed phase.
As the number of molecules fluctuates frame-by-frame,
the regressed V from the instantaneous Ni and V̄i is dis-
tributed around the fixed V of the simulation box, with
mean values in agreement, as enforced by the MLR. Esti-
mates of V̄i in the adsorbed phase represent the optimal
coefficients that solve theMLR problem, but do not share
the same meaning of V̄i in fluctuating-volume systems,
where the derivative formulation of partial molar prop-
erties (Equation (1)) is valid and V̄i corresponds to the
incremental change of volume that would occur due to a
change in Ni.

U in the adsorbed phase can take multiple values. In
contrast to the liquid phase (Figure 3(b–c)), in which
the regressed V, U, and Have give similar distributions
to the simulated distribution, in the adsorbed phase, the
regressed U is much narrower than the simulated distri-
bution (Figure 3(a)); the low- and high-energy tails of the
distribution are not well-described by a linear combina-
tion of partial molar properties. Nonetheless, the aver-
age U from regression closely matches that simulated, as
enforced by the MLR.

Table 4. Thermodynamic properties of 1,5-pentanediol and
ethanol adsorbing into MFI at 323 K and 1 bar, from solutions
with low (7.4%) and high (42%) concentrations of diol.

xDiol = 7.4% xDiol = 42%

Zeolite Liquid Zeolite Liquid

NEtOH 127.310 295.814 323 1503
NDiol 21.77 23.57 79.916 110.417
xEtOH 0.8545 0.9262 0.282 0.5769
xDiol 0.1465 0.0742 0.722 0.4249
V [nm3] 33.8613 34.53
U [K× 103] −9364 −14144 −10596 −14556
EpV ,ave [K× 103] 0.2451 0.2502
V̄EtOH [L/mol] 0.06054 0.0593
V̄Diol [L/mol] 0.1034 0.1074
ŪEtOH [kJ/mol] −46.24 −34.7718 −493 −372
ŪDiol [kJ/mol] −882 −632 −90.715 −603

EtOH Diol EtOH Diol
�Gtr [kJ/mol] 5.93 2.5311 3.974 1.9219
�Utr [kJ/mol] −123 −313 −11.43 −252
�Htr,ave [kJ/mol] −123 −313 −11.43 −252
�Str,ave [J/mol K] −5611 −10410 −47.510 −848

In the liquid, V̄Diol is nearly twice V̄EtOH, and ŪDiol
is 60% greater than ŪEtOH in the liquid phase, and 86%
greater in the zeolite. For this system, the partial molar
properties are relatively consistent across composition
(see Table 4). Internal energies and enthalpies of adsorp-
tion can also be calculated using Equation (9) and (10),
which are identical because pV is negligible. Both adsor-
bates experience an enthalpic gain upon adsorption:
−12 ± 3 kJ/mol for EtOH and −31 ± 3 kJ/mol for the
diol. After calculating the excess free energy of trans-
fer �Ḡtr,i using Equation (12), we can obtain the excess
entropies of transfer from �Ḡtr,i = �H̄tr,i − T�S̄tr,i. As
expected, entropy significantly decreases for both species
upon adsorption (Table 4); the zeolite is significantly
more confined than the solution phase.

4.4. Reaction equilibria of compressed nitrogen and
oxygen

Multiple linear regression may also be applied to closed
systems if the molecule populations fluctuate due to
chemical reactions. This is demonstrated in a reac-
tive first-principles MC simulation of a compressed
nitrogen/oxygen mixture consisting of 16N2 and 32O2
molecules at T=3000K and p=30GPa, as reported in
Ref. [56]. By monitoring the molecule populations, vol-
ume, and total energy of the system, partial molar prop-
erties may be calculated using Equations (5)–(8). With
V̄i and Ūi for each species, changes in volume and energy
upon reaction may be calculated using Equation (13).

�V̄N2+O2→2NO = 2V̄NO − V̄N2 − V̄O2

�ŪN2+O2→2NO = 2ŪNO − ŪN2 − ŪO2

(13)
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Figure 3. Parity plots and histograms illustrating the quality of the MLR for the adsorbed phase (a) and the liquid phase (b) and (c) for
1,5-pentanediol+ ethanol adsorption intoMFI from a solution with high (42%) concentration of diol. Mean absolute deviations of V and
U for the adsorbed phase are 0.28 nm3 and 1.6 × 104 K respectively and for the liquid phase are 0.28 nm3 and 1.15 × 104 K respectively.

The computational expense of this technique limited the
available statistics: after equilibration, 32 independent
simulations were performed for ∼4000MC steps each.
These short, highly-correlated trajectories could not be
analyzed using standardmultiple regression, which occa-
sionally yielded extreme and unphysical partial molar
properties (ca. V̄ or Ū = ±109 L/mol or kJ/mol). Ridge
regression (Equation (14)), which is a variation on mul-
tiple linear regression that allows control over the mag-
nitude of the fitted parameters, performed much better
than MLR – a small bias α = 10−5 was used to make the
regression well-behaved without affecting the final values
of the coefficients (Equation (14)).

Shifting V and U by the average V and U was also
found to be beneficial; the large atomisation energies (but
including pseudopotentials for the core electrons) and
energies of formation result in large negative energies
with only relatively small fluctuations (for example, rang-
ing from−1432.98268 to−1432.37738Hartrees) and led
to erratic fitting behaviour. (For the natural gas conden-
sate, shifting U and V by the molar U and V multiplied
by N prior to performing MLR did not influence the
quality of the fit; shifting is therefore advantageous in
data-poor simulations and becomes less important as the
amount of data increases.) The first-principles trajecto-
ries did not have sufficient statistics to compute partial
molar properties of trace species (NO2, N2O, and O), so

Table 5. Partialmolar properties of the reactiveN/O system in the
reactive NpT ensemble, and reaction properties for N2 + O2 →
2NO.

NO O2 N2

Ni 13.35 25.43 9.43
V̄i [Å3/molec] 38.087 37.993 38.00317
Ūi [kJ/mol] 2911 −115 −135
�V̄rxn [Å3/molec] 0.12
�Ūrxn [kJ/mol] 8132

frames including these species were excluded, and frames
with only the major species, NO, O2, and N2, were ana-
lyzed. Each independent trajectory was analyzed with
ridge regression to compute averages and 95% confidence
intervals. Table 5 and Figure 4 give the MLR results.

Linear regression : minimize (V − N · V̄)2

Ridge regression : minimize (V − N · V̄)2

+ α ∗
∑

V̄2
i (14)

For this system, ridge regression produced very pre-
cise estimates of the partial molar volume for all species,
indicating consistency among the independent simula-
tions, presumably aided by the very low compressibility at
the extreme pressure. However, the volume distribution
was highly skewed toward lower volumes, and the linear
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Figure 4. Parity plots and histograms illustrating the quality of the ridge regression fit for the reactive N/O system.

model did not capture this behaviour. The small num-
ber of molecules also produced striping in the regressed
values, which may have also contributed to the poor
fit. As expected for an incompressible mixture, the vol-
ume of reaction is zero within statistical uncertainties.
However, the energy distribution was not skewed, and
ridge regression produced partialmolar energies in a nar-
rower distribution, similar to that observed in the zeolite.
These estimates weremuch less certain - improved statis-
tics from longer runs or more efficient sampling would
produce more precise partial molar energies. Nonethe-
less, Equation (13) could be used to measure the reac-
tion energy, which was found to be endothermic by
81 ± 32 kJ/mol and of a reasonable order of magni-
tude when compared to equation-of-state approaches
[62–64].

5. Conclusions

Here we demonstrate the use of multiple linear regres-
sion (MLR) for calculating the partial molar proper-
ties of multicomponent mixtures in constant-pressure
simulations that allow for fluctuations in the number

of molecules either through phase transfer or reactive
moves. This method uses frame-by-framemeasurements
of totalNi, V, andU for an individual simulation box; no
special Monte Carlo moves or accounting of interactions
is required, so long as the population of molecules fluctu-
ates in a constant-pressure ensemble. We introduce this
method by calculating the partial molar properties of a
model natural gas condensate in the NVT-Gibbs, NpT-
Gibbs, and NpT ensembles. MLR quantitatively repro-
duces partial molar properties as calculated with numer-
ical differentiation (ND) in the NpT-Gibbs ensemble,
but the coupled volume fluctuations in the NVT-Gibbs
ensemble lead to incorrect partial molar properties, espe-
cially in the vapour phase. MLR with NpT-Gibbs pro-
vides significant cost savings relative to ND of multi-
ple simulations in the NpT ensemble. Through simple
post-processing of statistics from previously published
simulations, partial molar properties are easily obtained.
We demonstrate this by calculating partial molar prop-
erties for the liquid-phase adsorption of 1,5-pentanediol
and ethanol into the MFI zeolite [55], liquid-liquid equi-
librium in ethanol/n-dodecane/water mixtures [53], and
in the reactive NpT ensemble for compressed nitrogen
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and oxygen [56]. Notably, we find MLR to be useful
in reactive closed systems, as well, and that for systems
with poor statistics and an ill-conditioned composition
matrix, ridge regression can also be used to fit reasonable
partial molar properties. The numerical stability of MLR
and the resulting distributions can be improved by shift-
ing by the negative average value of a given property, so
that instantaneous values fluctuate around zero.
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