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Analysis of fast boundary-integral approximations for
modeling electrostatic contributions of molecular
binding

Abstract
We analyze and suggest improvements to a recently de-
veloped approximate continuum-electrostatic model for pro-
teins. The model, called BIBEE/I (boundary-integral based
electrostatics estimation with interpolation), was able to esti-
mate electrostatic solvation free energies to within a mean un-
signed error of 4% on a test set of more than 600 proteinsa
significant improvement over previous BIBEE models. In this
work, we tested the BIBEE/I model for its capability to pre-
dict residue-by-residue interactions in protein–protein binding,
using the widely studied model system of trypsin and bovine
pancreatic trypsin inhibitor (BPTI). Finding that the BIBEE/I
model performs surprisingly less well in this task than sim-
pler BIBEE models, we seek to explain this behavior in terms
of the models’ differing spectral approximations of the exact
boundary-integral operator. Calculations of analytically solv-
able systems (spheres and tri-axial ellipsoids) suggest two
possibilities for improvement. The first is a modified BIBEE/I
approach that captures the asymptotic eigenvalue limit cor-
rectly, and the second involves the dipole and quadrupole
modes for ellipsoidal approximations of protein geometries.
Our analysis suggests that fast, rigorous approximate mod-
els derived from reduced-basis approximation of boundary-
integral equations might reach unprecedented accuracy, if the
dipole and quadrupole modes can be captured quickly for
general shapes.
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1. IntroductionElectrostatic interactions play central roles in molecular biophysics, mediating both the affinity and specificity of inter-actions between biological molecules. The forces that charged and polar chemical groups exert on one another extendover very long distances, thus crucially regulating biological processes through the influence on molecular structure andrecognition of potential binding partners. Though important for understanding and predicting biomolecular behavior,electrostatics are difficult to quantify due to the fundamental uncertainty involved in characterizing charge distributions
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as well as the enormous number of degrees of freedom in the aqueous solvent. Another complication for modeling arisesin the large range of scales, from systems with a few dozen atoms (the waters surrounding biological ions such as sodiumand potassium [83, 86]) to those with millions of atoms, e.g. [94].Accordingly, a considerable range of physical models exist to study biomolecule electrostatics within solvent, fromquantum-mechanical models involving the Schrödinger equation to empirical (i.e., non-physical) models based on sta-tistical analysis of experimental data sets. Two of the most popular models sit between these extremes. First, all-atommolecular dynamics (MD) simulations in explicit solvent [47, 51, 84] provide one approach that balances computationaltime and accuracy, although the computational effort required to simulate the reorganization of water on an atom-istic level in response to changes in the solute configuration makes them currently infeasible for use in many designapplications.The other popular approach between the two extremes treats solvent as a polarizable continuum, i.e., without accountingfor the microscopic details of individual water molecules. Continuum models approximately account for the solventresponse, but in a more computationally efficient (faster) way than explicit solvent models, making them more appropriatefor use in high-throughput design and analysis applications. Such models have been reviewed extensively [25, 27, 31,36, 47, 48, 63, 65, 72, 80], and the most common are based on the Poisson equation. Although less computationallyintense than explicit solvent simulation, accurate numerical solution of the Poisson equation is still relatively costly,thus making accurate, efficient approximations of the Poisson equation an attractive alternative. Numerous approximatemodels that ultimately originate from the Poisson continuum framework have been developed, including the widely-usedclass of Generalized Born models [16, 62, 77, 82]; such models often require additional parameterization. Recently, aclass of Poisson-based models known as the Boundary Integral-Based Electrostatic Estimation (BIBEE) methods havebeen developed that may provide both reasonable accuracy and computational efficiency without the need for extensiveparameterization [9, 13, 15].In this paper we investigate how several BIBEE variants perform for estimating the electrostatic contributions to threequantities that are often used in the analysis of biomolecular systems: solvation free energies, binding free energies,and relative binding free energies. The electrostatic component of the solvation free energy is a common standardfor assessing the accuracy of electrostatic models. The electrostatic contribution to the binding free energy of twomolecules involves taking the difference between (electrostatic) solvation free energies, and a relative binding freeenergy involves a difference between binding free energies. Relative binding free energies enable a valuable approachfor biomolecular analysis called electrostatic component analysis [23], in which the contributions of individual proteinresidues or molecular moieties can be quantified, providing a systematic identification of residues or chemical groups thatare critical for molecular recognition of binding partners. This approach has been used to identify crucial determinantsof binding in protein–protein and drug–target [23, 35, 39, 50, 59, 61] systems. Relative binding free energies are alsocrucial in molecular design, when one wishes to quantify the effect of altering a biological molecule’s existing residueson its binding properties in order to design mutants with tighter or more specific binding [55]. They also enable directcomparisons, or rankings, among potential binding partners. Because biological processes are crucially mediated byboth absolute and relative molecular binding free energetics, the differences of solvation free energies are usually moreimportant than the solvation free energies themselves [53].Model approximations make repeated subtractions even more dangerous than usual: in most areas of computational mod-eling, of course, practitioners put significant effort to reformulate calculations so as to avoid computing small differencesbetween large numbers. To our knowledge, however, no such reformulation exists for estimating molecular binding freeenergies, and therefore several groups have developed higher-order (more accurate) numerical techniques to computethese differences accurately using the actual Poisson model [5, 7, 11, 18, 19, 24, 71, 90, 93]. We have been developingthe BIBEE approach to translate the physical insights underlying Generalized-Born (GB) theory into mathematicalnotions of boundary-integral operator approximations, so that future development of fast models may be conducted viamathematical insights in addition to physical ones.The recently proposed BIBEE/I model [13] is able to predict protein solvation free energies to within 4% mean unsignedrelative error over a large test set [32]. This represented a substantial improvement in accuracy over the originalBIBEE models, which motivated us to test the viability of fast BIBEE models for component analysis. We adopted asa model system the widely studied protein–protein binders of trypsin and bovine pancreatic trypsin inhibitor (BPTI)[20, 21, 64]; binding involves numerous interactions between both charged chemical groups and polar ones, especiallynear the specificity pocket. We find that several BIBEE methods provide qualitative but not quantitative agreementwith full Poisson calculations, and that component analysis applications demand substantially better accuracy than
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even the latest variant offers. To explain these results, we performed component analysis on simpler, analyticallysolvable geometries; this work led us to obtain a new interpretation of the BIBEE model as a type of reduced-basisapproximation [26, 29]. Our results suggest that such a strategy might offer more accurate Poisson approximations inthe future.The present study represents the first application of BIBEE models to component analysis, as a case study in thoroughlytesting the performance of fast Poisson approximations using the same types of calculations as are used in practicalapplications across biological science and engineering. Our paper provides two modeling frameworks to guide thefuture development and application of fast mathematical models for electrostatics. First, we suggest that component
analysis provides a mathematically meaningful and application-driven approach to checking model accuracy. Detaileddescriptions of component analysis may be found elsewhere [23], but the essential idea is to characterize the contributionsof individual chemical groups (such as side chains on a protein, or functional groups on a drug-like molecule) to bindingaffinity and specificity. Therefore, other researchers building fast approximation theories [54, 87] and other electrostatictheories should find component analysis useful as well, though it only applies to linear-response theories and notmore complex models [42]. Second, we identify a key area for improvement in the BIBEE approximation of boundary-integral formulations for molecular electrostatics. The approximation has evolved significantly already, from its originalexploration of a Generalized Born theory [9] through careful mathematical analysis showing bounding properties ofmultiple variants [15], and methods with improved accuracy [13]. Here, we suggest that what is really needed are fastalgorithms to estimate the dominant modes of the boundary-integral operators.In the following section, we describe our model for the electrostatic contribution to molecular binding free energies, andthe Poisson and BIBEE continuum models. Section 3 presents details of the numerical calculations and electrostaticcomponent analysis, as well as how we prepared the atomistic protein geometries and simplified model geometries forsimulations. Section 4 presents the results of our study of BIBEE component analysis in the trypsin/BPTI systemand model geometries, illustrating that accurate approximations of solvation free energies are not sufficient for accuratecomponent analysis. We do find, however, that model performance can predictably depend on system features, andwe provide model analysis to support the observations. Section 5 introduces the new reduced-basis interpretationof the BIBEE model, and results for model geometries indicate the new framework’s potential as a highly accurateapproximation for Poisson calculations. Section 6 concludes the paper with a discussion of our results, and a possiblestrategy to extend reduced-basis BIBEE to general shapes.
2. TheoryWe first outline a simple, widely used model of molecular binding and the electrostatic contributions to binding, andhow the continuum electrostatic model can be used to perform component analysis and investigate interactions betweenchemical groups. We then present the four approximate models based on the BIBEE (boundary-integral based electro-statics estimation) approach [9, 13, 15], and conclude by briefly describing analytical solutions to the Poisson problemin spherical and ellipsoidal harmonics [14, 45].
2.1. A Simple Model for Molecular BindingFigure 1 is a schematic diagram of the process of (non-covalent) molecular binding; we refer to the binding partners as
ligand and receptor. The thermodynamic cycle decomposes the binding free energy into two types of steps: the transferof a molecule between the solvent and a reference medium, and the binding of two molecules in the reference medium.In particular, the unbound molecules are first desolvated (transferred out of the solvent and into the reference medium),brought together in the reference medium, and then finally the ligand–receptor complex is re-solvated. The free energychange associated with transferring a molecule from the reference medium to the solvent is called its solvation free
energy ∆Gsolv,total, and it is commonly decomposed into a sum of electrostatic and non-electrostatic components,

∆Gsolv,total = ∆Gsolv + ∆Gsolv,non−es, (1)
where ∆Gsolv is the electrostatic solvation free energy. Using the thermodynamic cycle of Figure 1, the electrostaticcomponent of the binding free energy in the solvent can be written

∆Gbind = ∆Gsolv,L−R + ∆Gbind(reference) − ∆Gsolv,R − ∆Gsolv,L (2)
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solv,L-Rsolv,Lsolv,R

Fig 1. A simple thermodynamic cycle for estimating binding affinities. The shaded region in the bottom denotes the aqueous solution environment,
and the unshaded region in the top denotes a reference medium in which estimating binding affinities is performed easily, e.g., a vacuum or
homogeneous low-dielectric medium.

Region II: solvent

Region I: protein
Surface

Fig 2. Schematic illustrating the continuum electrostatic model for molecular solvation used in this work.

where ∆Gbind(reference) is the free energy of binding in the reference medium. In the present study we follow the commonapproximation of assuming that the molecules are rigid, i.e. we do not account for conformational fluctuations andbinding-induced conformational changes. Although more accurate predictions of molecular binding affinities require anaccount of these important considerations, the rigid-binding approximation has proved useful in numerous circumstancesto provide insight into binding affinity and specificity. The electrostatic component of each term of Eq. (2) then givesthe overall electrostatic contribution to the binding affinity.
2.2. Continuum Electrostatic Model for Solvation Free EnergiesFigure 2 is a simplified diagram of the continuum electrostatic model we employ to estimate electrostatic solvationfree energies. The solute interior, denoted as Region I in the figure, is modeled as a homogeneous dielectric with lowdielectric constant εprotein = 4. The protein charge distribution, written ρ(r), consists of a set of Nq discrete point charges,with values qi and positions ri. The electrostatic potential in this region obeys the Poisson equation

∇2φprotein(r) = −ρ(r)/ε0εprotein. (3)
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The solvent (exterior) region, denoted as Region II, is also modeled as a homogeneous dielectric, but with higher dielectricconstant εwater = 80, approximately that of bulk water, and the potential is governed by the Laplace equation
∇2φsolvent(r) = 0. (4)

We use this model, which describes a non-ionic aqueous solution, rather than the more biologically relevant Poisson–Boltzmann equation or its linearized form, because one of the purposes of this work is to understand the strengths andweaknesses of the BIBEE approach for component analysis, and to date the approximation applies only to the (non-ionic)Poisson problem.The boundary between the dielectric regions is denoted Γ, and across it the potential is continuous, as is the normalcomponent of the displacement field:
φprotein(rΓ) = φsolvent(rΓ) (5)

εprotein ∂φprotein(rΓ)
∂n = εwater ∂φsolvent(rΓ)

∂n . (6)
Here rΓ denotes a point on the boundary and the normal direction is defined to point outward from Region I to Region II.The total electrostatic potential in the protein, φprotein(r), is the sum of the Coulomb potential from the charge ρ(r), whichwe label as φCoul(r), and another component that arises due to the difference in polarizability between the solute andsolvent. This second component, denoted as φreac(r), is often called the reaction potential. By defining the referencemedium of the thermodynamic cycle in Figure 1 as a dielectric with the same permittivity as the protein, i.e. εprotein,the electrostatic component of the solvation free energy, ∆Gsolv , is just the energy of interaction between the chargedistribution and the reaction field:

∆Gsolv = 12
Nq∑
i=1 qiφreac(ri). (7)

The factor of 1/2 arises because the charges are interacting with their own reaction field in a linear-response theory,and the sum is over the Nq discrete charges because they represent the only fixed charges in the system. By definingthe reference medium as one with permittivity εprotein and assuming rigid binding, the electrostatic binding free energyin the reference medium (labeled as ∆Gbind(reference) in Figure 1) is equal to the Coulomb interaction energy between themolecular charge distributions.Linear response also allows the reaction potential to be written as a scaled sum of the potentials induced by theindividual charges; defining q as the Nq-length vector of charge values, we can write the Nq-length vector of reactionpotentials at the charge locations as
φreac = Aq (8)

where the symmetric, negative-definite reaction-potential matrix A has Nq rows and Nq columns. One can calculate Aby performing Nq independent electrostatic calculations such that in the ith simulation, one sets qi = +1e and all theothers to zero, and then computes the reaction potential at all of the charge locations.We denote the vector of N ligand
q ligand charges by qL, the vector of the Nreceptor

q receptor charges by qR , the vector of
N ligand
q +Nreceptor

q charges for the ligand-receptor complex by qC = [qL, qR ], and also denote by CRL the Coulomb potentialmatrix for the interactions between the ligand and receptor charges. The Coulomb field at the ligand charges due to thereceptor charges is then just φCoul,receptorcomplex = CRLqR ; by reciprocity, φCoul,ligandcomplex = CT
RLqL. Eq. (2) is then written

∆Gbind = +12 [ qTL qTR
] [ AcomplexLL AcomplexLR

AcomplexRL AcomplexRR
][

qL
qR

] + qTRCRLqL −
12qTL AligandqL − 12qTRAreceptorqR , (9)

where the superscripts on the matrices A denote the particular electrostatic problem; the reaction potential matrix forthe complex, Acomplex , has been partitioned into four block matrices that correspond to the reaction potentials that the
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two charge distributions generate. Eq. (9) can be re-arranged into terms that depend on the ligand charge distributiononly, on the receptor charge distribution only, and on both charge distributions:
∆Gbind = 12qTL (AcomplexLL − Aligand

)
qL︸ ︷︷ ︸Only dependent on qL

+qTR
(
CRL + AcomplexRL

)
qL︸ ︷︷ ︸Dependent on both qL and qR

+ 12qTR (AcomplexRR − Areceptor
)
qR︸ ︷︷ ︸Only dependent on qR

. (10)
The first and last terms are the desolvation penalties paid by the ligand and receptor on binding, respectively; the secondterm, known as the interaction component, includes the direct Coulomb interaction between the two charge distributionsas well as their solvent-screeened interaction on solvation.
2.3. Matrix Formalism and Component AnalysisTo describe how we analyze the interactions between different chemical groups, it is helpful to write Eq. (10) in a simplerform as ∆Gbind = qTL LqL + qTRRqR + qTRCqL (11)where

L = 12 (AcomplexLL − Aligand
) (12)

R = 12 (AcomplexRR − Areceptor
) (13)

C = CRL + AcomplexRL . (14)
As noted previously, L and R are matrices representing the potential differences between the bound and unbound statesassuming unit charges at each charge location in turn, on the ligand and receptor, respectively. For example, the (i, j)element of the L matrix is one-half the potential difference between the bound and unbound states at charge center i dueto a unit charge at charge center j , with both charges belonging to the ligand charge distribution. Accordingly, qTL LqLrepresents the ligand desolvation penalty and qTRRqR represents the receptor desolvation penalty; qTRCqL represents thesolvent-screened Coulombic interaction between the ligand and the receptor, with Cij equaling the bound-state potentialof charge i on the ligand due to a unit charge j on the receptor. Because the high dielectric solvent interacts favorablywith the solutes, the ligand and receptor desolvation energies, qTL LqL and qTRRqR respectively, are always nonnegativeunder the rigid binding assumption; accordingly, L and R are positive semidefinite. The above matrix representation isindependent of the method used to solve for the potentials to create the matrix elements, although of course, the matrixelements themselves will depend on the model used.Once the matrix elements of L, C , and R are known, the electrostatic free energy of binding can be computed for anyarbitrary charge distribution on either binding partner. Specifically, the charges on a particular group—an amino acid,for example—can be set to zero (approximating mutation to a hydrophobic isostere) and the electrostatic binding freeenergy trivially re-evaluated. The computational challenge is therefore in calculating the necessary matrix elements,and the goal of this study is to compare the accuracies of approximate models for doing this quickly.If the binding free energy increases upon zeroing out the charges on a particular residue or chemical group, then thatgroup’s charge distribution favorably contributes to binding; conversely, if the binding free energy improves (decreases)upon removal of all charges, then the residue’s charge distribution unfavorably contributes to binding. For each residue,we define ∆∆Gbindgroup,mut = ∆Gbindgroup=0 − ∆Gbindoriginal (15)where ∆Gbindgroup=0 is the computed binding free energy when the charges on a given group are set to zero, ∆Gbindoriginal isthe original binding free energy between the binding partners, and ∆∆Gbindgroup,mut quantifies the change in binding freeenergy upon mutating a group to its hypothetical, hydrophobic isostere. We will usually denote this by ∆∆Gbind. In thiswork, we systematically zero out the charges of entire residues to investigate the role of residues’ charge distributionsin mediating binding.We note that if one wishes to analyze the residues of only one of the two binding partners, arbitrarily the ligand, thenone need not calculate the full R and C matrices. For example, if only the ligand charge distribution is varied, oneneeds only the product CqR and the constant receptor desolvation penalty qTRRqR .
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2.4. Numerical Calculation of the Poisson ModelIn this paper, we assess the accuracy of the approximate electrostatic models using complementary numerical methodsfor solving the Poisson continuum model: the finite-difference method (FDM) and the boundary element method (BEM).The finite-difference method has been a popular way to solve the Poisson and Poisson–Boltzmann problems, due in partto the wide availability of thoroughly tested software, e.g. DelPhi, UHBD, and APBS [8, 34, 46, 57, 70, 71, 85]. Thesemethods solve an approximation to the spatially varying dielectric problem ∇· (ε(r)∇φ(r)) = −ρ(r) on a Cartesian grid.In contrast, boundary-element methods solve boundary-integral equation (BIE) re-formulations of the PDE problem [5,6, 10, 44, 52, 56, 78, 89, 92]. For the mixed-dielectric Poisson problem here, one may use the well-known BIE
σ (r) + ε̂n(r) · ∫Γ

r− r′4π|r− r′|3 σ (r′)dA′ = −ε̂n(r) ·∑
k

qk
ε(rk ) r− rk4π|r− rk |3 (16)

where σ (r) denotes the distribution of induced charge that develops at the dielectric boundary (the solute–solventinterface), ε̂ = 2(εprotein − εwater)/(εprotein + εwater) and the integral is assumed to be the principal value integral. Viewingthe right-hand side as a linear map from the vector of point charges q to the normal component of the electric field wecan write Eq. (16) in operator form as (I + ε̂K )σ = Bq; φreac, the vector of reaction potentials at the charge locations,is just the Coulomb potential induced by the induced surface charge σ (r). Denoting the operator that maps from thesurface charge to reaction potentials as S, the reaction potential matrix can be written
A = S(I + ε̂K )−1B. (17)

Readers interested in more details are referred to the extensive literature on numerical simulation of this BIE and othersfor solvation problems [7, 10, 12, 18, 19, 60, 73, 78, 91, 92].
2.5. Approximate Electrostatic ModelsThe BIBEE (boundary-integral-based electrostatics estimation) model was originally obtained by mathematical analysisof the surface-generalized Born (SGB) model of Ghosh et al. [33], who observed that the Coulomb-field approximation(CFA) used in many Generalized-Born (GB) theories could be related to the boundary-integral equation of Eq. (16). Inparticular, Ghosh et al. noted that in the CFA, the solvation free energy of a single charge is equal to the solvation freeenergy obtained by approximating Eq. (16) as(1− ε̂2

)
σ̃CFA,GB
i (r) = −ε̂n(r) · qiε(ri) r− ri4π|r− ri|3 , (18)

(seemingly neglecting the boundary-integral operator of Eq. (16) completely) and then calculating the effective Bornradius Ri from the approximate reaction potential induced at ri by σ̃CFA,GB
i (r). Surprisingly, this approximation givesthe exact solution for a sphere with central charge, and this fact was noted by Ghosh et al. as a justification for theCFA. Bardhan showed that this exactness holds much more generally; in fact, this approximation is exact for any surfaceand charge distribution such that the charges generate a uniform normal electric field at the surface [9]. The BIBEEmodel generalized this approximation from the calculation of single-charge solvation free energies to arbitrary chargedistributions (1− ε̂2

)
σ̃BIBEE/CFA(r) = −ε̂n(r) ·∑

k

qk
ε(rk ) r− rk4π|r− rk |3 , (19)

and here, in contrast to the GB/CFA approach, the total approximate surface charge is used to compute the reactionpotential at all charge locations. A similar approach was later derived by Fedichev et al. [30]. The CFA essentiallyentails assuming K = − 12 I , in other words that all the eigenvalues of the electric field operator K are equal to
− 12 . A complementary approximation can be found, in which one assumes that K = 0; because the BEM form ofthis approximation can be used as a preconditioner for Krylov-subspace iterative methods [9], we call this K = 0approximation BIBEE/P.Recently, two new variants on the BIBEE model were introduced [13], based on the Onufriev group’s insightful analysisof GB theory [79]. The new BIBEE models, called BIBEE/M and BIBEE/I, exploit a simple but remarkable property
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Fig 3. The exact eigenvalues of the integral operator K in Eq. (16) for a sphere [41], the approximate eigenvalues employed in previous BIBEE
models [9, 13], and the approximate eigenvalues in a reduced-basis approach to BIBEE.

of the electric-field integral operator: the dominant eigenvalue of K is always −1/2, regardless of the surface (subjectto certain restrictions on its smoothness), and the left and right eigenvectors are constant functions [15]. This modecan be treated analytically without approximation, leaving the other modes to be approximated. The BIBEE/M variantassumes all the other integral-operator eigenvalues to be 0, whereas BIBEE/I uses a single effective parameter λ∗ forall other eigenvalues (to capture dominant modes such as the dipole and quadrupole response [13]). By fitting λ∗ tomatch solvation free energies for a small set of proteins, one obtains with λ∗ = −0.2 a surprisingly accurate modelthat exhibited 4% accuracy over the Feig et al. test set of more than 600 proteins [32]. A schematic of the variousBIBEE approximations is shown in Figure 3. We note the various BIBEE approximations are essentially equally fast,approximately an order of magnitude faster than full BEM simulation; the various BIBEE models differ only in the leastexpensive step of the computation (application of the approximate inverse).
2.6. Analytical Solutions For Spherical and Ellipsoidal SolutesKirkwood’s analytical solution for the reaction potential due to charges in a spherical solute begins by expanding theCoulomb potential from the charge distribution, as well as the reaction and solvent potentials, in spherical harmonics [45].This is possible because spherical harmonics form a complete basis for the space of possible potentials, much like Fouriermodes. We then enforce the boundary conditions, Eqs. (5) and (6), in order to determine the coefficient of each term inthe series. This task is greatly simplified because spherical harmonics of different orders are orthogonal to each other,and therefore each harmonic can be treated individually. After this simplification, we obtain the equations below for asphere of radius b,

Cnm
εprotein + b2n+1Rnm = Snm (20)

Cnm
εwater −

εprotein
εwater

n
n+ 1b2n+1Rnm = Snm. (21)

where the expansion coefficients for the Coulomb potential are denoted by Cnm, those for the reaction field by Rnm,and those for the potential in the solvent by Snm; here (nm) is the index of a particular spherical harmonic Y m
n (θ, φ).
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Because the coefficients Cnm can be computed directly from the solute charge distribution, we can solve these two linearequations in two unknowns to determine the coefficients; summing the series, we arrive at the full solvent and reactionfields.Surprisingly, exactly the same formalism may be used to derive the BIBEE/CFA and BIBEE/P approximations. The keystep is to view the approximate surface charges as satisfying a modified set of boundary conditions (see Eq. (41) in [13]),so that for BIBEE/CFA
εprotein
εwater

∂φCoul(rΓ)
∂n = ∂φsolvent(rΓ)

∂n − ∂φreac(rΓ)
∂n , (22)

replaces Eq. (6), and we have decomposed φprotein into direct Coulomb term from the solute charges, and the reactionfield term:
φprotein = φCoul + φreac. (23)

Similarly, for BIBEE/P we replace Eq. (6) with
3εprotein − εwater
εprotein + εwater

∂φCoul(rΓ)
∂n = ∂φsolvent(rΓ)

∂n − ∂φreaction(rΓ)
∂n . (24)

With these modified boundary conditions, we are able to derive a series solution for the approximate BIBEE potentialsexactly as we did in the case of the full electrostatic operator above. Many consequences of this approximation arederived in [13].Note that we have not used any specific properties of the spherical harmonics, other than the fact that they constitutea complete, orthogonal basis for the potential in space. Therefore, replacing the spherical harmonics with anothercomplete, orthogonal basis will not change our methodology, but only the specific answers. The most general set ofharmonic, orthogonal functions are the ellipsoidal harmonics [28, 40], which match more accurately the shape of manyproteins. We can repeat the procedure above for ellipsoids, so that the Coulomb and reaction potentials are expandedin the internal ellipsoidal harmonics Emn (r), and the solvent potential is expanded in the external ellipsoidal harmonics
Fmn (r). The exact boundary conditions are [88]:

Cm
n

εprotein + Rm
n
Em
n (a)

Fm
n (a) = Smn (25)

Cm
n

εwater + Rm
n
εprotein
εwater

∂Emn (λ)
∂λ |a

∂Fmn (λ)
∂λ |a

= Smn (26)
where the integer pair (n,m) identifies a single harmonic just as for spherical harmonics, the functions Em

n (λ) and Fm
n (λ)are the first-kind and second-kind Lamé functions for that harmonic, and the argument a is the ellipsoid’s longest semi-axis. To derive a BIBEE model in ellipsoidal harmonics, we perform a similar procedure of considering the modifiedboundary condition as was done for the sphere.

3. Methods
3.1. Structure PreparationComponent analysis studies were carried out using a 1.85-Angstrom crystal structure of BPTI complexed with trypsin(PDB ID 3BTK [37]); Figure 4 is a rendering of the complex, with key residues highlighted. Resolved sulfate ions wereremoved from the structure, and water molecules with fewer than 3 potential protein hydrogen-bonding contacts wereeliminated. Retained crystallographic waters were assigned to either BPTI or trypsin in the unbound state by manualexamination of potential hydrogen bonding contacts with either partner. The amide groups of asparagine and glutamineside chains and the imidazole groups of histidine side chains were visually examined for potential hydrogen bondingcontacts and flipped if a clear improvement in hydrogen bonding interactions would be obtained. Standard protonationstates were assumed for all residues, and the δ-tautomer of Histidine-57 was modeled to preserve the hydrogen bondingnetwork within the catalytic triad.Hydrogen atoms were added using the HBUILD facility within CHARMM [22], using the all-atom CHARMM22 parameterset and force field [43]. Side chain or backbone atoms that were not resolved in the crystallographic experiment were
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PRO 513

LYS 515

CYS 514

ARG 539

ASP 189

GLN 192

GLY 193

SER 190

SER 195

PHE 41

TYR 39

ARG 517

trypsin

key residues on BPTI binding interface

BPTI

key residues on trypsin binding interface

Fig 4. Rendering of the trypsin–BPTI complex, with trypsin in light blue and BPTI in dark red, with key residues for binding highlighted.

added and energy-minimized using CHARMM. The first two residues of BPTI were unresolved, and therefore Asp503 wascomputationally patched with an acetyl group. For all continuum electrostatic calculations, PARSE radii and chargeswere used [81]. Only atoms with nonzero PARSE radii were considered as charge centers in assembling the necessarymatrices used in component analyses.
3.2. FDM calculationsA multigrid finite-difference numerical solver of the Poisson equation [2] was used to solve for the bound and unboundstate potentials needed to assemble the relevant matrices used for component analyses. A 1.4-Å probe radius wasused to define the molecular surface for the dielectric boundary. Potentials were solved on a 257× 257× 257 uniformrectilinear grid, using a three-stage focusing procedure in which the structure occupied first 23 percent, then 92 percent,and finally 184 percent of the grid along the longest dimension, centering on the charged atom in the final case. Thegrid resolution at the highest focusing was 8.7 grids/Å. To account for the sensitivity of the calculated potentials tothe placement of the grid, potentials were computed for three slight translations of the grid (translated approximately0.5 Å relative to each other), and their average values were used.
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3.3. BEM and BIBEE calculationsAll BEM and BIBEE calculations were performed using the FFTSVD fast solver [3, 5]. Piecewise-constant basisfunctions were used to approximate the induced surface charge, and the qualocation discretization approach was used todefine the BEM linear system [4, 10, 12, 17]. The required molecular-surface discretizations (surface meshes) consistedof planar triangles, which were generated using MSMS [74, 75] with a specified vertex density of 6.0 vertices/Å2. Weverified that this resolution was adequate by comparing the reaction-potential matrices for BPTI and trypsin computedat vertex densities of 4.0 and 8.0 vertices/Å2.
3.4. Model system calculationsTo systematically analyze model performance, spherical and ellipsoidal model systems were used (see Figure 2 for thesphere geometry) for which the complex solvation energy ∆Gsolv , the ligand desolvation matrix L, and the interaction vector
CqR could be computed analytically using the appropriate harmonics. The latter two terms allow for the quantificationof the ligand-charge-dependent portion of binding free energies as well as for complete component analysis of ligandcharge groups. We define the “ligand-dependent binding free energy", ∆G∗,bind, to be the sum of the ligand desolvationpenalty and the interaction terms: ∆G∗,bind = qTL LqL + qTL CqR (27)
∆G∗,bind is the total electrostatic binding free energy excluding the receptor desolvation penalty. The efficient cal-culation of ∆G∗,bind using model geometries of ligand and complex enables the charge locations and values on eitherbinding partner to be studied thoroughly via random sampling, in order to understand the relationship between theelectrostatic properties of the binding partners and their accurate modeling using the different BIBEE methods. Forspheres, multipoles up to order 35 were used; for ellipsoids, calculations were truncated at order 10, because availablealgorithms for calculating ellipsoidal harmonics suffer numerical accuracy issues for higher orders [14]. We note that fora charge r away from the center of a sphere of radius a, truncation at order N leads to an error proportional to (r/a)N ;consequently, the minimum order needed for a given tolerance is problem specific.Charge distributions were randomly generated within each binding partner. In the receptor cavity, 20 charges wereused. Within each ligand, we defined four randomly-generated “residues,” which were each assigned one of eight simplegeometries: a line consisting of 3 charges in each of the three ordinal directions, a square, a triangle in each of 3different planes, or a cube. Each residue consisted of charges that were allowed to vary from 0.85e to -0.85e. Forgenerality in the analyses, residues were not constrained to have an overall integral charge. For spherical systems, allcharges within either ligand or receptor were at least 1.4 Å away from the cavity boundary and from each other; forellipsoidal geometries, all charges were constrained to lie within the dielectric cavity and to be at least 1.4 Å awayfrom each other. While quantitative values sometimes differed, important trends were found to be robust to the specificdetails of the model systems (such as the number of charges on either partner, the minimum distance allowed betweencharges, and the anisotropy of the ellipsoidal geometries), the order of expansion of the analytical “exact” answer, andthe number of trials used to compute relative RMSEs.
3.5. Matrix manipulations, figure generation, and calculation of errorMatlab [1] was used to perform all matrix calculations for component analysis, for generating all plots, for generatingmodel systems, and for calculations on model systems using the analytically exact Kirkwood method [45] and analyticalversions of the approximate BIBEE model [13]. To avoid magnifying small absolute differences between the methods,we excluded all data points whose magnitudes were less than 1 kcal/mol (via the most accurate method) in calculatingrelative RMSEs, for both the model and the biological systems, unless otherwise noted. Relative RMSE values for avector quantity x were defined as follows:

rel. RMSE =
√√√√∑

n

(
xapprox−xexact

xexact

)2
n (28)

and all reported r values are standard Pearson’s correlation coefficients.
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8 20

Fig 5. Schematic depicting a spherical ligand binding to a receptor to create a spherical complex. Radii are given in Angstroms. Charge distributions
were randomly generated, with those on the ligand being grouped into four model “residues.” An analogous model system was generated
for a tri-axial ellipsoidal ligand binding to a receptor to form an ellipsoidal complex. For the analyses in which geometry was held fixed and
charge distributions were randomly varied, we used ligand axes of 7.6, 6.5, and 4.4 Å, and receptor axes of 19, 18, and 13 Å. Relative to the
complex center, the ligand is translated by [4.75 1.48 2.98] and rotated by [0.839 -0.535 0.098; -0.441 -0.775 -0.451; 0.318 0.336 -0.887].

4. Component Analysis for Protein–Protein Binding
4.1. Prediction of residue-based contributions in the trypsin–BPTI systemFigure 6 summarizes the performance of the BIBEE methods in a component-analysis application for the trypsin–BPTIsystem. All comparisons are made to high-resolution finite-difference method (FDM) numerical solutions of the Poissonequation. Figure 1 in the Supplemental Information compares the numerical convergence of both the FDM grid andthe panel discretization used for the BIBEE methods, plotting ∆∆Gbind for all residues within BPTI and trypsin whencalculated by BEM and FDM solutions to the Poisson equation. The comparison shows generally very good agreement,although the agreement is better for trypsin than for BPTI. Recall that the ∆∆Gbind is a relative binding free energybetween the two partners when a given residue has all of its atomic charges set to zero and when its charges are attheir original values, and therefore it quantifies the importance of a residue’s charge distribution toward binding. Bothmethods clearly identify “outliers” for BPTI and trypsin — residues that contribute far more favorably toward bindingthan any other residues, as zeroing out their charge distributions greatly worsens binding. The residues with the highest∆∆Gbind when calculated via either method are the canonical “specificity-determining residues" of Lys515 on BPTI andAsp189 on trypsin, demonstrating their importance in this system and in the utility of component analysis in identifyingkey “hot spot" residues in binding interactions. Points corresponding to these residues are labeled in Figure 6(a) and (b).As seen in Figure 6, none of the approximate methods shows highly quantitative agreement, although BIBEE/CFAshows good qualitative and modest quantitative agreement with the FDM values for both trypsin and BPTI. BIBEE/Pincorrectly predicts the sign of ∆∆G for charged residues (red and green points in Figure 6(b) and (f)), meaning thatit predicts residues to contribute favorably when the actual Poisson model predicts the opposite. However, BIBEE/P isquantitatively accurate for polar and hydrophobic residues (RMSE=79.74%, even when using a more stringent cutoff of0.1 kcal/mol, rather than 1 kcal/mol used elsewhere, for inclusion in the rel. RMSE calculation (SI Figure 2)). Theseresults suggest that BIBEE/P is better suited for modeling systems that do not involve changes in overall monopole.Finally, of particular note is BIBEE/I, which, although it had previously shown excellent average accuracy for ∆Gsolvon numerous biological systems [13], does not perform accurately in this stringent application, which combines both thecompounding errors of ∆∆Gbind and the irregular molecular shapes inherent to actual biological systems.Taken together, these mixed results on a biological system led us to look more deeply into the approximate methodsto better understand both the types of systems (charged, polar, etc.) in which each performed well or poorly, as wellas the potential assumptions that contributed to their varying performances on this test system. For example, it wasintriguing that BIBEE/P performed so poorly for predicting the contributions of charged residues but appeared to offersemi-quantitative accuracy for polar but uncharged groups. Below, we describe the analyses that followed on simplifiedgeometries, and the insights we gained about the existing models that may lead to substantially improved models thatare more suitable for application to biological systems.
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Fig 6. Comparison of residue-based contributions ( ∆∆Gbind) obtained using more approximate models to those obtained using the finite-difference
method (FDM) solution of the Poisson Equation. Positive values of ∆∆Gbind indicate a residue that contributes favorably to binding, because
setting all charges on the residue to zero worsens binding. Points on each graph are colored according to the legend in panel (a). Residues
known to be crucial for molecular recognition in this system are labeled in panels (a) and (b). Approximate methods shown here are
BIBEE/CFA (panels a and b), BIBEE/P (panels (c) and (d)), BIBEE/M (panels (e) and (f)), and BIBEE/I using an effective eigenvalue λ∗ = −0.2
(panels (g) and (h)). Results for all residues on BPTI (left) and trypsin (right) are shown separately. Relative RMSE’s exclude points with a
magnitude of less than 1 kcal/mol when calculated using FDM; additional r values are given for cases in which outliers significantly perturb
the quality of approximation.
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Fig 7. Comparison of approximate BIBEE methods in predicting complex ∆Gsolv (Figs. 7(a) and (d)), the ligand-dependent ∆G∗,bind ((b) and (e)), and
the ∆∆Gbind upon setting the charges within a random ligand residue to zero ((c) and (f)) for randomly generated instances of the spherical
model system ((a)-(c)) and the ellipsoidal model system ((d)-(f)) described in the Methods. One thousand randomly generated sets of charge
locations and values within the model system geometry were used as a set of model binding complexes. In all cases, approximate energies
are compared with analytically calculated “exact” values using a high-order multipole expansion. The legend shown in (a) is applicable to all
panels.

4.2. Prediction of residue-based contributions in model geometriesFigure 7 is a comparison of each of the BIBEE methods in predicting particular energetic quantities for randomlygenerated instances of the spherical model system ((a), (b), and (c)) and the ellipsoidal model system ((d)-(f)) describedin the Methods. For each geometry, the quantities compared are the calculated complex ∆Gsolv (Figs. 7(a) and (d)),the ligand-dependent ∆G∗,bind ((b) and (e), described in Methods), and the ∆∆Gbind ((c) and (f)) for determining thecontribution of a randomly-selected model “residue” component within the ligand, by comparing the binding free energywhen the residue is charged to when all charges on it are set to zero (see Methods). One thousand randomly generatedsets of charge locations and values within the model system geometry were used as a set of model binding complexes.The spherical and ellipsoidal ligand and complex geometries remained constant throughout all trials; only chargesvaried. In all cases, approximate energies are compared with analytically calculated values using a high-order multipoleexpansion.For all methods and both geometries, there is good correlation for ∆Gsolv (r values ≥ 0.99 in all cases). In agreement withtheory [15], BIBEE/CFA systematically overestimates ∆Gsolv because the CFA entails approximating all of the integral-operator eigenvalues by the known extremal eigenvalue (Figure 3). Conversely, BIBEE/P systematically underestimates∆Gsolv because the approximation employs the other limit for a sphere [15]. By construction, BIBEE/M provides amore accurate approximation than BIBEE/P while still underestimating the exact answer, because it exactly treats themonopole response (i.e. the zero mode) while underestimating the other modes as BIBEE/P does. Finally, BIBEE/I veryaccurately predicts ∆Gsolv for the spherical system, with an rel. RMSE of only 3% (Table 1), by assuming an approximateeigenvalue for modes beyond the monopole. However, the BIBEE/I model performed far worse for the ellipsoidal modelsystem (rel. RMSE of 29%); we note that for the sphere we employed λ∗ = −0.12 in the BIBEE/I model, which is
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Fig 8. The accuracy of the original BIBEE approximations depends in predictable ways on the overall system monopole and the details of the BIBEE
approximation. Relative errors in solvation free energies are plotted for 1000 random charge distributions in (a) spheres and (b) ellipsoids,
with the legend in (a) applying to both panels.

in between the dipole eigenvalue −1/6 and the quadrupole eigenvalue −1/10, whereas for the ellipsoidal system, weemployed λ∗ = −0.20, because this value gave the best overall accuracy in earlier work on (non-spherical) proteinsystems [13] and was the value used in our modeling of trypsin-BPTI. As a control to compare directly to the sphericalsystem results, we also ran a separate series of 1000 trials for the ellipsoidal model system in which λ∗ = −0.12 forBIBEE/I. In this case, the performance was actually slightly better (rel. RMSE = 23% for solvation free energies) butstill robustly worse than its performance for spherical systems.Both ∆Gbind and ∆∆Gbind require taking differences of solvation energies, and so any systematic bounds seen in thespherical system need not hold (Figure 7, panels (b) and (c)), although BIBEE/CFA generally appears to underestimate∆G∗,bind, while BIBEE/P and BIBEE/M generally overestimate it for both spherical and ellipsoidal systems. This“reversal" in the bias of the methods in going from solvation free energies to binding free energies is interesting, and apotential subject of future analysis. Nevertheless, Figure 7 demonstrates that systematic bounds that hold for solvationfree energies in physics-based approximate methods may not hold when calculating other quantities of biological interest.As shown in Table 1, BIBEE/I consistently outperforms the other original BIBEE methods (CFA, P, and M) for thespherical model system, while BIBEE/P consistently shows the poorest relative accuracy. In the ellipsoidal system,BIBEE/M shows the best performance when λ∗ was set to either −0.12 (data not shown) or −0.20 in the BIBEE/Imodel. However, in all cases, the relative RMSE increases as one proceeds from evaluating ∆Gsolv to ∆G∗,bind to∆∆Gbind, regardless of the precise BIBEE approximation. These results, even with simplified geometries, demonstratethe importance of evaluating a model’s accuracy using multiple benchmarks in order to understand the model-specificpropagation of error in obtaining quantities of biological importance that involve taking the differences of approximatevalues. We note that these trends observed for RMSE are likely to reverse if one considers absolute error and not relativeerror. Relative error is a more reasonable choice here because the magnitudes of solvation, binding, and mutationalenergies are generally quite different.
4.3. Influence of molecular monopole on BIBEE approximationsFigure 8 shows the percent error in the computed complex ∆Gsolv values for each of the thousand randomly generatedcharge distributions in the sphere and ellipsoid model geometries analyzed above, as a function of the monopole (netcharge) of the complex. In these calculations, monopoles were not constrained to be integral. For ease of visualization,points were excluded if |∆Gsolv| was less than 1 kcal/mol, because small absolute deviations in ∆G values create verylarge relative errors.
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Figure 8 shows that BIBEE/CFA, BIBEE/M, and BIBEE/I become increasingly accurate as the magnitude of the monopoleincreases, with large overestimation of ∆Gsolv for zero-monopole complexes and much smaller errors for complexes withlarge magnitude monopoles. Such a result is likely a consequence of BIBEE/CFA’s exact modeling of the highest-magnitude eigenvalue of the solvation matrices for spherical systems, i.e. the component of solvent response that isdictated solely by the monopoles of the species involved. Conversely, BIBEE/P shows complementary behavior; it ismost accurate when the monopole is zero or near zero and becomes extremely inaccurate for larger magnitude monopoles.This phenomenon results from BIBEE/P’s increasingly accurate modeling of the smaller eigenmodes of solvation, whichare associated with higher-order multipole contributions toward the solvation energy [13]. As before, while BIBEE/CFAtends to overestimate the ∆Gsolv for zero-monopole species, BIBEE/M tends to underestimate. The different performanceof BIBEE/I between the systems may be attributed to the use of different optimized λ∗ (-0.12 for the sphere and -0.20 forthe ellipsoid [13]), but the overall poorer accuracy of BIBEE/I for component analysis of trypsin/BPTI and for ellipsoidalsystems (using either value of λ∗ in the latter case) suggests that detailed analysis of this point is of secondaryimportance.The observed solvation free energy results for a sphere may be analyzed as follows. We write the eigendecomposition ofthe exact reaction-potential matrix as A = VΛV T , where of course V is orthonormal and Λ is diagonal. For the sphere,the BIBEE approximate reaction-potential matrices have the same eigenbasis V as A, as shown previously [13], andtherefore we may write Â = V (Λ + E)V T for any BIBEE model, where E is also diagonal and represents the error inthe reaction-potential eigenvalue. The exact solvation free energy can be written as a sum over modes
∆Gsolv =∑

i
λi(V T

i q)2 (29)
where Vi represents the ith eigenvector, and an approximate solvation free energy is similarly written

∆Gsolv
approx =∑

i
(λi + ei)(V T

i q)2. (30)
Writing qi = V T

i q so that q1 is the net monopole, the relative error is then
Rel. error = e1q21 + e2q22 + e3q23 + . . .

λ1q21 + λ2q22 + λ3q23 + . . .
. (31)

For the BIBEE/CFA model, e1 = 0 and so one expects that the relative error decays to zero as the monopole magnitudeincreases, as seen in Figure 7. For BIBEE/P, e1 = ε̂/(2 − ε̂), and with the given dielectric constants the relative errorshould approach 90% with increasing monopole, which it does; we have also verified that the relative error asymptoticallyapproaches correct values for other values of the dielectric constants. In the BIBEE/M model, e1 = 0 and all the otherterms ei are equal to those from BIBEE/P. As in the CFA model, zero error in the monopole term implies an inverserelationship between the net monopole and relative error, which can also be observed. Last, in BIBEE/I we have e1 = 0and also the parameter λ∗ has been set to approximately zero out the other error terms [13]. As a result, the methodhas very small relative error even for small net monopoles, and again must approach zero with increasing monopole.As a whole, the preceding results allow us to better place into context the results of our component analyses onthe trypsin/BPTI system. For example, as we have seen that BIBEE/P systematically becomes less accurate as themonopole magnitude of the species under consideration increases, we can understand why it performed so poorly forcharged residues on trypsin and BPTI but did reasonably well for polar uncharged trypsin residues. Likewise, giventhe poor performance of BIBEE/I on ellipsoidal systems relative to spherical systems, especially in computing relativebinding free energies on the model systems (rel. RMSE for ∆∆Gbind is 100% for ellipsoids with but only 9% for spheres),we can understand the relatively poor performance of BIBEE/I in a component analysis application on an irregularlyshaped molecule. To control for the different values of λ∗ used for BIBEE/I for the sphere and ellipsoidal systemsas mentioned above, we also carried out separate analyses on 1000 trials of the ellipsoid using the spherical system
λ∗ = −0.12, and we found the rel. RMSE for ∆∆Gbind still to be significantly higher for the ellipsoid (71%, data notshown).
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5. A Reduced-Basis Interpretation Approach to Improving BIBEE ModelsAs Figure 3 illustrates, the first BIBEE models (BIBEE/CFA and BIBEE/P) replaced all of the integral-operator eigen-values with one extremal value or another [9]; this allowed, after some analysis, the proof that BIBEE/CFA is alwaysan upper bound, and BIBEE/P is a lower bound for some boundaries such as spheres [15]. These models are purelydiagonal approximations to the boundary-integral operator (in the discretized form, the diagonal entries of the BEMmatrix). The simplicity and speed advantages associated with inverting diagonal matrices is merely a red herring: amore fruitful interpretation for these models is that they approximate the eigendecomposition of the integral operator,
D ∗ = VΛD ∗V −1 (32)

with ΛD ∗ = λI , so that D ∗ = λI . In general, the electric-field operator D ∗ is not symmetric and V −1 6= V T ; we do,however, have the Calderon identity GD ∗ = D G, where G is the (symmetric) single-layer operator.We begin our discussion using the special case of a spherical boundary so that D ∗ actually is symmetric, with D ∗ = − 12R Gwhere R is the sphere radius [41]. Then we can write
D ∗sphere = VΛV T , (33)

where V are the surface spherical harmonics, and the diagonal entries of Λ are the corresponding eigenvalues of theintegral operator: for n ≥ 0,
λnm = − 12(2n+ 1) . (34)

Writing Eq. (16) as (I + ε̂D ∗)σ (r) = f (r), we can express the exact surface charge as
σ (r) = ∞∑

n=0
+n∑

m=−nY
m
n (r) [(1 + ε̂λnm)−1 ∫ Y m,∗

n (r)f (r)dA] (35)
so the expression in square brackets represents the expansion coefficient for σ (r) in the eigenfunctions of D ∗.From this viewpoint, it is simple to test how approximating the operator spectrum affects the overall approximationaccuracy. The BIBEE/I variant, for example, attains good accuracy for solvation free energies but does so at theexpense of exhibiting the wrong asymptotic behavior for small eigenvalues (Figure 3). With Eq. (35), we may investigatewhether a “three eigenvalue” approximation would be more accurate still, employing the exact operator eigenvalue
λ00 = −1/2 for the monopole, one approximate eigenvalue λ∗ for some dominant modes (say, dipoles and quadrupoles),and approximating all remaining modes using the exact asymptotic value 0. The surface charge for this variant, whichwe term truncated BIBEE/I, is

σ̂ (r) =Y 00 (r) [(1 + ε̂λ00)−1 ∫ Y 0,∗0 (r)f (r)dA]︸ ︷︷ ︸exact monopole
+ ∑

1≤n≤k
n∑

m=−nY
m
n (r) [(1 + ε̂λ∗)−1 ∫ Y m,∗

n (r)f (r)dA]︸ ︷︷ ︸approximate dipole, quadrupole terms with λnm≈λ∗
(36)

+∑
n>k

n∑
m=−nY

m
n (r) [(1 + ε̂ · 0)−1 ∫ Y m,∗

n (r)f (r)dA] .︸ ︷︷ ︸approximate higher−order terms with λnm≈0
Naturally, a more accurate approach would be to use, for each of some number of dominant modes, the actual corre-sponding eigenvalue, and then approximating the rest by 0, so that

σ̂ (r) =∑
n≤k

n∑
m=−nY

m
n (r) [(1 + ε̂λnm)−1 ∫ Y m,∗

n (r)f (r)dA]︸ ︷︷ ︸All dominant modes treated exactly
+∑

n>k

n∑
m=−nY

m
n (r) [(1 + ε̂ · 0)−1 ∫ Y m,∗

n (r)f (r)dA] .︸ ︷︷ ︸Higher−order terms approximated with λnm≈0
(37)
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Figure 3 provides a schematic of the reduced-basis BIBEE ideas. Also, it is important to note the difference between theabove approximation and a mere truncation of the infinite sum over multipoles, which would give only the first summationin Eq. (37), i.e.
σ̂ (r) =∑

n≤k

n∑
m=−nY

m
n (r) [(1 + ε̂λnm)−1 ∫ Y m,∗

n (r)f (r)dA]︸ ︷︷ ︸All dominant modes treated exactly
+∑

n>k

n∑
m=−nY

m
n (r)

(1 + ε̂λ∗)−1︸ ︷︷ ︸=0
∫
Y m,∗
n (r)f (r)dA

 . (38)

A different way to think about the errors due to truncation is to consider that the higher modes would be modeled as if
λ∗ =∞, when in fact it is known that |λnm| ≤ 1/2.As noted above, however, in general D ∗ is not symmetric, which greatly complicates calculating the expansion of thenormal electric field at the boundary into the operator eigenfunctions. Currently, we can only test the reduced-basisBIBEE idea using ellipsoids, building on work by Ritter [67], who has shown that the surface ellipsoidal harmonics, whichobey important orthogonality relations, are in fact eigenfunctions of D , and closely related functions are eigenfunctionsof D ∗. Then, similarly to the sphere, we may calculate the BIBEE approximation by expanding the potential in harmonicsand employing the appropriate λnm or λ∗ for each term as desired. In this way, we can conduct a preliminary test ofthe accuracy of the two reduced-basis BIBEE methods without the computational expense of actually computing thetruncated SVDs of the dense matrices. Ellipsoids offer an important test not available in spheres, which is the factthat for a given expansion order n, the operator eigenvalues λnm are not all equal (contrast Eq. (34)). It is unfortunatethat our tests of this model are limited presently to the sphere and ellipsoid, but ongoing work is focused on testingreduced-basis BIBEE for atomistic protein surfaces.
5.1. Application to Reaction-Potential MatricesTo estimate the performance of reduced-basis BIBEE models for computing reaction-potential matrices, we created anensemble of ten random ellipsoids, each of which contained 100 random charges. The three semi-axes for each ellipsoidwere assigned random values from a uniform distribution with mean 16 Å and width 6.4 Å, corresponding to a variationup to ± 20%; allowing larger relative variations did not qualitatively affect the results. In each ellipsoid, the 100 chargeswere picked at random to be at Cartesian lattice sites where the lattice spacing was 1.4 Å, and charges were requiredto lie within the ellipsoidal surface.The plots in Figure 9 are of the mean absolute errors between the eigenvalues of the reaction-potential matrix, and thecorresponding eigenvalues of three BIBEE approximations, for spheres and ellipsoids; error bars denote the standarddeviations. Figure 9(a) contains the results for BIBEE/M and BIBEE/I for the sphere, as well as the reduced-basistruncated form of BIBEE/I; Figure 9(b) is a plot of the same results but zoomed in on the dominant modes. Figures 9(c)and (d) are plots of the same calculations for the random ellipsoids, showing two similar qualitative behaviors, andone noticeable deviation from the sphere results. The first similarity is that for smaller-magnitude eigenvalues, theBIBEE/I eigenvalues exhibit larger deviations from the exact ones than do the BIBEE/M or the truncated BIBEE/I. Weattribute this phenomenon to the fact that BIBEE/I uses inaccurate values for the smallest-magnitude eigenvalues of theintegral operator, whereas BIBEE/M and truncated BIBEE/I use the correct asymptote (Figure 3). Second, we obtainthe expected result that the truncated BIBEE/I produces results similar to BIBEE/I for the dominant modes, and resultssimilar to BIBEE/M for the smaller modes. The noticeable deviation between the sphere and ellipsoid results is that inthe sphere case, BIBEE/M is less accurate for the dipole and quadrupole modes than are the BIBEE/I and truncatedBIBEE/I modes; however, in the ellipsoid case BIBEE/M is more accurate.Figures 10(a) and (b) include plots of the BIBEE/CFA, BIBEE/P, and the other reduced-basis approaches (up to dipole,quadrupole, and octopole terms; the monopole approach is BIBEE/M, which is plotted in Figure 9) for the sphere,employing the actual eigenvalues of the ellipsoid integral operator [67–69]. As in the previous Figure, in (a) are plottedthe errors across the entire spectrum, and (b) is a zoomed-in plot on the dominant modes. Figures 10(c) and (d) are plotsof the same models applied to random ellipsoids. Unsurprisingly, treating more modes exactly produces more accurateanswers. What is surprising, however, is that only quadrupole modes are needed to estimate all reaction-potentialeigenvalues to better than 2 kcal/mol/e2 accuracy, which corresponds to a relative accuracy of better than 0.1% forthe monopole, better than 1% for the dipole modes, a few percent for the quadrupole modes, approximately 10% for allother modes. This represents a reduced-basis approximation of D ∗ with 9 basis vectors. Adding the octopole modes
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Fig 9. Average absolute errors in the eigenvalues of reaction-potential matrices when approximated with the BIBEE/M, BIBEE/I, and truncated
BIBEE/I variants, on an ensemble of 10 random charge distributions in a 16-Å sphere ((a) and (b)) and in random ellipsoids with mean axis
lengths of 16 Å ((c) and (d)).

leads to estimates that are accurate to within 1 kcal/mol/e2, with the monopole and dipole modes estimated to within0.4 kcal/mol/e2 (the relative accuracy approaches 0.01% for the monopole). We also note the expected result that addingmore modes leads more modes to be estimated accurately; notice the distinct increases in errors for BIBEE/M after themonopole mode (index 1), for BIBEE/dipole after the dipole modes (index 4). SI Figure 3 is a plot of the projections of theapproximate reaction-potential eigenvectors for BIBEE/dipole onto the exact reaction-potential eigenvectors. The resultsshow almost perfect agreement, and we note that some noise is inevitable due to the previously mentioned difficulties incomputing the harmonics to high numerical accuracy. The combination of accurate reproduction of eigenvalues as wellas eigenvectors suggests that the reduced-basis BIBEE methods should be able to perform well on component analysis.To further test the accuracy of the interpolation BIBEE and reduced-basis methods on both spherical and ellipsoidalmodel systems, we performed component analysis on the same 1000 randomly-generated spherical and ellipsoidalsystems depicted schematically in Figure 7. The comparison of these approximate models for estimating ∆Gsolv , ∆G∗,bind,and ∆∆Gbind against the analytical results are shown in Figure 11 and Figure 12. The relative RMSEs are listed inTable 1.The interpolation BIBEE approaches perform substantially better for the sphere geometries than for the ellipsoids forboth λ∗ = −0.2 (data shown) and λ = −0.12 (data not shown) in the case of ellipsoids, which suggests that the influence
142
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Fig 10. Average absolute errors in the eigenvalues of reaction-potential matrices when approximated with several BIBEE variants, on an ensemble
of 10 random charge distributions in a 16-Å sphere ((a) and (b)) and in random ellipsoids with mean axis lengths of 16 Å ((c) and (d)).

of boundary anisotropy should be included wherever possible. Substantial advances in Generalized Born theories havebeen made previously by analysis of spheres [79], and ellipsoids may offer a new path to further improvements. TruncatedBIBEE/I appears to offer minimal improvement. However, the reduced-basis approach provides better accuracy for bothgeometries, with the accuracy unsurprisingly improving as more modes are included, with the octopole approximationhaving a relative error of only 2 − 4% (Table 1). It is interesting that the reduced-basis approximations also suffer inrelative accuracy as one proceeds from solvation to binding to relative binding free energies. The persistence of thissensitivity, even when using an “optimal” approximation of the integral operator (these geometries allow us to use theexact reduced singular-value decomposition), supports our claim that component analysis offers a stringent, and thereforeuseful, test for the accuracy of fast approximate Poisson models.We may also analyze the dependence of the reduced-basis approximations on the overall system monopole, as in Figure 7.These results, calculated using the same charge distributions, are plotted in SI Figure 4. For spheres, the reduced-basisapproaches (in SI Figure 4 (c) and (d)) based on the actual operator eigenvalues are comparable to, or outperform,BIBEE/I and the truncated version ((a) and (b)), and for ellipsoids the reduced-basis approaches are all significantlymore accurate. These results therefore indicate that the BIBEE/I approach introduces significant approximation errorby assuming that the dominant operator eigenvalues are identical. In other words, even simple shape anisotropy (as the
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shape deviates from a sphere to an ellipsoid) can sharply limit the accuracy of approximations that assume a sphericalboundary.We also note that for both the sphere and ellipsoid case, the truncated form of BIBEE/I offers minimal accuracyimprovements over the original BIBEE/I. These results contrast with the incorrect asymptotic behavior of the spectrumfor the BIBEE/I reaction-potential matrix, versus the corrected behavior for truncated BIBEE/I (Figure 9). Taken together,the results imply that for binding and component-analysis applications, the modes corresponding to smaller eigenvalueswhere the BIBEE/I and truncated form differ (indices greater than about 15 in Figure 9) contribute negligibly to theerror.The overall accuracy of BIBEE/I and its truncated form is superior for the sphere than the ellipsoid, which we attributeto the fact that in the sphere, the dipole and quadrupole terms contribute little to the overall error because the λ∗ can beplaced a priori. For the ellipsoids, however, a single λ∗ fit for a set of proteins does not necessarily capture the anisotropyof the given geometry, and the dipole and quadrupole eigenvalues can be significantly different from the correspondingeigenvalues in the sphere geometry. Therefore, the errors in the ellipsoid BIBEE/I and truncated BIBEE/I are dominatedby poor approximation of the dominant multipoles beyond the monopole (which, recall, is treated exactly)—meaning thatin practice each ellipsoid requires a different optimal λ∗. On the other hand, it is encouraging that actual reduced-basisexamples exhibit about the same approximation properties for both the sphere and ellipsoid examples, because thisindicates that shape variation and anisotropy will be captured reasonably well for a range of geometries. In fact, thereduced based approach still showed excellent accuracy on preliminary trials in which ellipsoidal geometries were variedin addition to the charge distribution (data not shown), suggesting that the reduced-basis approach could show goodperformance across a range of geometries.
6. DiscussionIn this paper, we have used electrostatic component analysis, a popular approach for biomolecular analysis and design,to analyze the performance and specific characteristics of recent variants of the BIBEE approach to approximatingcontinuum electrostatics. Component analysis is widely used to identify protein residues that contribute significantly tomolecular binding affinity [23], but requires many detailed electrostatic calculations. The atom-by-atom calculation ofthe Poisson or Poisson–Boltzmann equation is computationally expensive, especially for protein–protein binding, whichmotivates simple, faster approximations such as Generalized Born methods [23]. In this work, we sought to test whetherthe latest BIBEE model, known as BIBEE/I, provided accuracy suitable for component analysis, given that it was shownto estimate solvation energies to within a few percent using a test set of hundreds of proteins [13]. However, accuracyfor a given problem can be substantially improved by tuning the single parameter in BIBEE/I for the molecular shapeof interest, so it remains to be seen how well BIBEE may perform for other classes of molecules, such as nucleic acids.We were disappointed to find that for protein–protein binding, BIBEE/I did not robustly perform better than even theBIBEE/CFA model on the trypsin/BPTI model system (Figure 6). This failure motivated us to analyze the approximationproperties of the BIBEE models in more detail, using analytically solvable model problems (spherical and ellipsoidal
Table 1. Relative root mean square error (rel. RMSE), %, for approximately calculated complex solvation free energies (∆Gsolv), ligand-dependent

binding free energies (∆G∗,bind) and relative binding free energies ∆∆Gbind in spherical and ellipsoidal model systems, when compared to
high-order “exact” multipole expansions. Approximate methods included here are BIBEE/CFA (CFA), BIBEE/P (P), BIBEE/M (M), BIBEE/I
(I), the truncated BIBEE/I (TI), and the reduced basis approximations, using up through the dipole (D), quadrupole (Q) and octopole (O).
1000 randomly-generated charge distributions were used for the spherical geometry and ellipsoidal geometry. For robustness, points
were excluded from the relative RMSE calculation if their “exact” values had magnitudes of less than 1 kcal/mol.Sphere Ellipsoid∆Gsolv ∆G∗,bind ∆∆Gbind ∆Gsolv ∆G∗,bind ∆∆GbindCFA 28 34 46 26 49 87P 44 248 344 48 164 238M 13 26 37 14 21 49I 3 7 9 29 47 100TI 4 7 9 23 34 86D 6 8 10 6 10 20Q 3 3 4 3 5 10O 2 2 2 2 3 4
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Fig 11. Comparison of interpolation BIBEE-based methods in predicting complex ∆Gsolv (panels (a) and (d)), the ligand-dependent ∆G∗,bind ((b) and
(e)), and the ∆∆Gbind upon setting the charges within a random ligand residue to zero ((c) and (f)) for randomly generated instances of the
spherical model system ((a)-(c)) and the ellipsoidal model system ((d)-(f)) described in the Methods. One thousand randomly generated
sets of charge locations and values within the model system geometry were used as a set of model binding complexes. In all cases,
approximate energies are compared with analytically calculated “exact” values using a high-order multipole expansion. For comparison,
the results using BIBEE/CFA are also shown. The legend in panel (a) is applicable in all panels.

geometries). We were able to explain why the BIBEE/P approximation, which gave very inaccurate results overall,offered reasonable accuracy for neutral residues; the same analysis indicated that the Coulomb-field approximation, andmethods built to correct its errors, become increasingly accurate as the system’s net charge increases in magnitude.Most biological macromolecules such as proteins and DNA tend to be highly charged, so our finding may offer a partialexplanation why such simple electrostatic models can sometimes offer useful accuracy in screening studies and bindinganalysis, even though numerous critical studies have demonstrated the dangers of assuming that accurate solvation freeenergies lead to accurate binding free energies [38, 58, 66, 76].By considering the more recent BIBEE variants, BIBEE/M and BIBEE/I, as approximations to the reducedSVD/eigendecomposition of the boundary-element method matrix, we were able to suggest a possible strategy forimproving accuracy. Results on the analytically solvable model systems suggest that reduced-basis BIBEE methodsmight offer excellent accuracy, but the major challenge is to rapidly estimate this reduced basis. Early work on BIBEEmodels noted that the dominant eigenvectors of the reaction-potential matrix resembled low-order harmonics [9], evenfor realistic molecular shapes such as peptides. This suggests that shape approximations such as those used in spectralboundary-element methods [49] could provide a way to estimate reduced-basis approximations rapidly.
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Fig 12. Comparison of reduced-basis approximations in predicting complex ∆Gsolv (panels (a) and (d)), the ligand-dependent ∆G∗,bind ((b) and
(e)), and the ∆∆Gbind upon setting the charges within a random ligand residue to zero ((c) and (f)) for randomly generated instances of the
spherical model system ((a)-(c)) and the ellipsoidal model system ((d)-(f)) described in the Methods. One thousand randomly generated
sets of charge locations and values within the model system geometry were used as a set of model binding complexes. In all cases,
approximate energies are compared with analytically calculated “exact” values using a high-order multipole expansion. The legend in
panel (a) is applicable in all panels.
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